Skip to main content

Regularized Discrete Optimal Transport

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2013)

Abstract

This article introduces a generalization of discrete Optimal Transport that includes a regularity penalty and a relaxation of the bijectivity constraint. The corresponding transport plan is solved by minimizing an energy which is a convexification of an integer optimization problem. We propose to use a proximal splitting scheme to perform the minimization on large scale imaging problems. For un-regularized relaxed transport, we show that the relaxation is tight and that the transport plan is an assignment. In the general case, the regularization prevents the solution from being an assignment, but we show that the corresponding map can be used to solve imaging problems. We show an illustrative application of this discrete regularized transport to color transfer between images. This imaging problem cannot be solved in a satisfying manner without relaxing the bijective assignment constraint because of mass variation across image color palettes. Furthermore, the regularization of the transport plan helps remove colorization artifacts due to noise amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics Series. American Mathematical Society (2003)

    Google Scholar 

  2. Rubner, Y., Tomasi, C., Guibas, L.: A metric for distributions with applications to image databases. In: International Conference on Computer Vision (ICCV 1998), pp. 59–66 (1998)

    Google Scholar 

  3. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution of the monge-katorovich mass transfer problem. Numerische Mathematik 84, 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. International Journal of Computer Vision 60, 225–240 (2004)

    Article  Google Scholar 

  5. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Transactions on Computer Graphics and Applications 21, 34–41 (2001)

    Article  Google Scholar 

  6. Morovic, J., Sun, P.L.: Accurate 3d image colour histogram transformation. Pattern Recognition Letters 24, 1725–1735 (2003)

    Article  Google Scholar 

  7. McCollum, A.J., Clocksin, W.F.: Multidimensional histogram equalization and modification. In: International Conference on Image Analysis and Processing (ICIAP 2007), pp. 659–664 (2007)

    Google Scholar 

  8. Delon, J.: Midway image equalization. Journal of Mathematical Imaging and Vision 21, 119–134 (2004)

    Article  MathSciNet  Google Scholar 

  9. Pitié, F., Kokaram, A.C., Dahyot, R.: Automated colour grading using colour distribution transfer. Computer Vision and Image Understanding 107, 123–137 (2007)

    Article  Google Scholar 

  10. Papadakis, N., Provenzi, E., Caselles, V.: A variational model for histogram transfer of color images. IEEE Transactions on Image Processing 20, 1682–1695 (2011)

    Article  MathSciNet  Google Scholar 

  11. Rabin, J., Peyré, G.: Wasserstein regularization of imaging problem. In: IEEE International Conderence on Image Processing (ICIP 2011), pp. 1541–1544 (2011)

    Google Scholar 

  12. Louet, J., Santambrogio, F.: A sharp inequality for transport maps in via approximation. Applied Mathematics Letters 25, 648–653 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schellewald, C., Roth, S., Schnörr, C.: Evaluation of a convex relaxation to a quadratic assignment matching approach for relational object views. Image Vision Comput 25, 1301–1314 (2007)

    Article  Google Scholar 

  14. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  15. Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing. Trans. Img. Proc. 17, 1047–1060 (2008)

    Article  MathSciNet  Google Scholar 

  16. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York (1986)

    MATH  Google Scholar 

  17. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the ℓ1-ball for learning in high dimensions. In: Proc. ICML 2008, pp. 272–279. ACM, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferradans, S., Papadakis, N., Rabin, J., Peyré, G., Aujol, JF. (2013). Regularized Discrete Optimal Transport. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38267-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38266-6

  • Online ISBN: 978-3-642-38267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics