Abstract
Segmenting the image into an arbitrary number of parts is at the core of image understanding. Many formulations of the task have been suggested over the years. Among these are axiomatic functionals, which are hard to implement and analyze, while graph-based alternatives impose a non-geometric metric on the problem.
We propose a novel approach to tackle the problem of multiple-region segmentation for an arbitrary number of regions. The proposed framework allows generic region appearance models while avoiding metrication errors. Updating the segmentation in this framework is done by level set evolution. Yet, unlike most existing methods, evolution is executed using a single non-negative level set function, through the Voronoi Implicit Interface Method for a multi-phase interface evolution. We apply the proposed framework to synthetic and real images, with various number of regions, and compare it to state-of-the-art image segmentation algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adam, A., Kimmel, R., Rivlin, E.: On scene segmentation and histograms-based curve evolution. IEEE-TPAMI 31(9), 1708–1714 (2009)
Amiaz, T., Lubetzky, E., Kiryati, N.: Coarse to over-fine optical flow estimation. Pattern Recognition 40(9), 2496–2503 (2007)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE-TPAMI 23(11), 1222–1239 (2001)
Brox, T., Weickert, J.: Level set segmentation with multiple regions. IEEE-TIP 15(10), 3213–3218 (2006)
Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66(1), 1–31 (1993)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. IJCV 22(1), 61–79 (1997)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. JMIV 40(1), 120–145 (2011)
Chan, T., Vese, L.: Active contours without edges. IEEE-TIP 10(2), 266–277 (2001)
Chopp, D.L.: Some improvements of the fast marching method. SIAM Journal on Scientific Computing 23(1), 230–244 (2001)
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE-TPAMI 24(5), 603–619 (2002)
Cremers, D., Kohlberger, T., Schnörr, C.: Shape statistics in kernel space for variational image segmentation. Pattern Recognition 36(9), 1929–1943 (2003)
Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. IJCV 96(1), 1–27 (2012)
Freedman, D., Zhang, T.: Active contours for tracking distributions. IEEE-TIP 13(4), 518–526 (2004)
Greenspan, H., Ruf, A., Goldberger, J.: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Transactions on Medical Imaging 25(9), 1233–1245 (2006)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. IJCV 1(4), 321–331 (1988)
Leventon, M.E., Grimson, W.E.L., Faugeras, O.D.: Statistical shape influence in geodesic active contours. In: CVPR, pp. 1316–1323 (2000)
Lucas, B.C., Kazhdan, M., Taylor, R.H.: Multi-object spring level sets (MUSCLE). In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 495–503. Springer, Heidelberg (2012)
Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: A level set approach. IEEE-TPAMI 17(2), 158–175 (1995)
McLachlan, G., Peel, D.: Finite mixture models. Wiley-Interscience (2000)
Michailovich, O., Rathi, Y., Tannenbaum, A.: Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE-TIP 16(11), 2787–2801 (2007)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42(5), 577–685 (1989)
Ni, K., Bresson, X., Chan, T., Esedoglu, S.: Local histogram based segmentation using the Wasserstein distance. IJCV 84(1), 97–111 (2009)
Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (1988)
Paragios, N., Deriche, R.: Geodesic active regions: A new framework to deal with frame partition problems in computer vision. Journal of Visual Communication and Image Representation 13(1-2), 249–268 (2002)
Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008)
Riklin-Raviv, T., Kiryati, N., Sochen, N.: Prior-based segmentation by projective registration and level sets. In: ICCV, vol. 1, pp. 204–211. IEEE (2005)
Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)
Sagiv, C., Sochen, N., Zeevi, Y.: Integrated active contours for texture segmentation. IEEE-TIP 15(6), 1633–1646 (2006)
Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: A level set model for image classification. IJCV 40(3), 187–197 (2000)
Saye, R., Sethian, J.: The Voronoi Implicit Interface Method for computing multiphase physics. Proceedings of the National Academy of Science 108(49), 19498–19503 (2011)
Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences 93(4), 1591 (1996)
Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: CVPR, vol. 2. IEEE (1999)
Tsai, A., Yezzi Jr., A., Willsky, A.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE-TIP 10(8), 1169–1186 (2001)
Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. IJCV 50(3), 271–293 (2002)
Yezzi Jr, A., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and trimodal imagery. In: ICCV, vol. 2, pp. 898–903. IEEE (1999)
Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. of Computational Physics 127(1), 179–195 (1996)
Zhu, S., Yuille, A.: Region competition: Unifying snakes, region growing, and bayes/mdl for multiband image segmentation. IEEE-TPAMI 18(9), 884–900 (1996)
Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: ICPR, vol. 2, pp. 28–31. IEEE (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dubrovina, A., Rosman, G., Kimmel, R. (2013). Active Contours for Multi-region Image Segmentation with a Single Level Set Function. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-38267-3_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38266-6
Online ISBN: 978-3-642-38267-3
eBook Packages: Computer ScienceComputer Science (R0)