Skip to main content

Applying ICA in EEG: Choice of the Window Length and of the Decorrelation Method

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 357))

Abstract

Blind Source Separation (BSS) approaches for multi-channel EEG processing are popular, and in particular Independent Component Analysis (ICA) algorithms have proven their ability for artefacts removal and source extraction for this very specific class of signals. However, the blind aspect of these techniques implies well-known drawbacks. As these methods are based on estimated statistics from the data and rely on an hypothesis of signal stationarity, the length of the window is crucial and has to be chosen carefully: large enough to get reliable estimation and short enough to respect the rather non-stationary nature of the EEG signals. In addition, another issue concerns the plausibility of the resulting separated sources. Indeed, some authors suggested that ICA algorithms give more physiologically plausible results than others. In this paper, we address both issues by comparing four popular ICA algorithms (namely FastICA, Extended InfoMax, JADER and AMICA). First of all, we propose a new criterion aiming to evaluate the quality of the decorrelation step of the ICA algorithms. This criterion leads to a heuristic rule of minimal sample size that guarantees statistically robust results. Next, we show that for this minimal sample size ensuring constant decorrelation quality we obtain quasi-constant ICA performances for some but not all tested algorithms. Extensive tests have been performed on simulated data (i.i.d. sub and super Gaussian sources mixed by random mixing matrices) and plausible data (macroscopic neural population models placed inside a three layers spherical head model). The results globally confirm the proposed rule for minimal data length and show that the use of sphering as decorrelation step might significantly change the global performances for some algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schomer, D., Lopes da Silva, F. (eds.): Niedermeyers’s Electroenephalography: Basic Principles, Clinical Applications and Related Fields. Wolters Kluwer, Lippincott Willimas & Wilkins (2011)

    Google Scholar 

  2. Sanei, S., Chambers, J.: EEG Signal Processing. John Wiley & Sons (2007)

    Google Scholar 

  3. Scherg, M., Berg, P.: Use of prior knowledge in brain electromagnetic source analysis. Brain Topography 4, 143–150 (1991)

    Article  Google Scholar 

  4. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing Learning Algorithms and Applications. John Wiley & Sons, New York (2002)

    Book  Google Scholar 

  5. Delorme, A., Palmer, J., Onton, J., Oostenveld, R., Makeig, S.: Independent eeg sources are dipolar. PLoS ONE 7(2), e30135 (2012)

    Google Scholar 

  6. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  7. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  8. Palmer, J., Makeig, S., Delgado, K., Rao, B.: Newton method for the ICA mixture model. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008, March 31-April 4, pp. 1805–1808 (2008)

    Google Scholar 

  9. Cardoso, J.: High-order contrasts for independent component analysis. Neural Computation 11(1), 157–192 (1999)

    Article  MathSciNet  Google Scholar 

  10. Särelä, J., Vigário, R.: Overlearning in marginal distribution-based ICA: analysis and solutions. J. Mach. Learn. Res. 4, 1447–1469 (2003)

    Google Scholar 

  11. Onton, J., Makeig, S.: Information-based modeling of event-related brain dynamics. Progress in Brain Research 159, 99–120 (2006)

    Article  Google Scholar 

  12. Delorme, A., Makeig, S.: EEGLab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  13. Palmer, J., Makeig, S., Delorme, A., Onton, J., Acar, Z.A., Kreutz-Delgado, K., Rao, B.D.: Independent Component Analysis of High-density Scalp EEG Recordings. In: 10th EEGLAB Workshop, Jyväskylä, Finland, June 14-17 (2010)

    Google Scholar 

  14. Vaseghi, S., Jetelova, H.: Principal and independent component aanalysis in image processing (2008)

    Google Scholar 

  15. Wu, Y., Wu, B., Liu, J., Lu, H.: Probabilistic tracking on riemannian manifolds. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4 (December 2008)

    Google Scholar 

  16. Korats, G., Le-Cam, S., Ranta, R.: Impact of window length and decorrelation step on ICA algorithms for EEG blind source separation. In: Biosignals/Biostec INSTICC Annual Conference (2012)

    Google Scholar 

  17. Wendling, F., Bartolomei, F., Bellanger, J.J., Chauvel, P.: Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. European Journal of Neuroscience 15(9), 1499–1508 (2002)

    Article  Google Scholar 

  18. Berg, P., Scherg, M.: A fast method for forward computation of multiple-shell spherical head models. Electroencephalography and Clinical Neurophysiology 90(1), 58–64 (1994)

    Article  Google Scholar 

  19. Lopes da Silva, F.H., Hoeks, A., Smits, H., Zetterberg, L.H.: Model of brain rhythmic activity. Biological Cybernetics 15, 27–37 (1974)

    Google Scholar 

  20. Jansen, B., Rit, V.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics 73, 357–366 (1995)

    Article  MATH  Google Scholar 

  21. Wendling, F., Hernandez, A., Bellanger, J.J., Chauvel, P., Bartolomei, F.: Interictal to ictal transition in human temporal lobe epilepsy: Insights from a computational model of intracerebral EEG. Clinical Neurophysiology 22(2), 343–356 (2005)

    Google Scholar 

  22. Hallez, H., Vanrumste, B., Grech, R., Muscat, J., De Clercq, W., Vergult, A., D’Asseler, Y., Camilleri, K., Fabri, S., Van Huffel, S., Lemahieu, I.: Review on solving the forward problem in EEG source analysis. J. Neuroeng. Rehabil. 4, 46 (2007)

    Article  Google Scholar 

  23. Ma, J., Gao, D., Ge, F., Amari, S.-I.: A One-Bit-Matching Learning Algorithm for Independent Component Analysis. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 173–180. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korats, G., Le Cam, S., Ranta, R., Hamid, M. (2013). Applying ICA in EEG: Choice of the Window Length and of the Decorrelation Method. In: Gabriel, J., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2012. Communications in Computer and Information Science, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38256-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38256-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38255-0

  • Online ISBN: 978-3-642-38256-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics