Skip to main content

Assessment of Gait Symmetry and Gait Normality Using Inertial Sensors: In-Lab and In-Situ Evaluation

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2012)

Abstract

Quantitative gait analysis is a powerful tool for the assessment of a number of physical and cognitive conditions. Unfortunately, the costs involved in providing in-lab 3D kinematic analysis to all patients is prohibitive. Inertial sensors such as accelerometers and gyroscopes may complement in-lab analysis by providing cheaper gait analysis systems that can be deployed anywhere. The present study investigates the use of inertial sensors to quantify gait symmetry and gait normality. The system was evaluated in-lab, against 3D kinematic measurements; and also in-situ, against clinical assessments of hip-replacement patients. Results show that the system not only correlates well with kinematic measurements but it also corroborates various quantitative and qualitative measures of recovery and health status of hip-replacement patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, F.M., Rhodes, J.T., Flynn, K.M., Carollo, J.J.: The role of gait analysis in treating gait abnormalities in cerebral palsy. Orthopedic Clinics of North America 41(4), 489–506 (2010)

    Article  Google Scholar 

  2. Salarian, A., Russmann, H., Vingerhoets, F., Dehollain, C., Blanc, Y., Burkhard, P., Aminian, K.: Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring. IEEE Transactions on Biomedical Engineering 51(8), 1434–1443 (2004)

    Article  Google Scholar 

  3. Cruz, T.H., Dhaher, Y.Y.: Evidence of abnormal lower-limb torque coupling after stroke: An isometric study supplemental materials and methods. Stroke 39(1), 139–147 (2008)

    Article  Google Scholar 

  4. Benedetti, M., Montanari, E., Catani, F., Vicenzi, G., Leardini, A.: Pre-operative planning and gait analysis of total hip replacement following hip fusion. Computer Methods and Programs in Biomedicine 70(3), 215–221 (2003)

    Article  Google Scholar 

  5. Toro, B., Nester, C., Farren, P.: A review of observational gait assessment in clinical practice. Physiotherapy Theory and Practice 19(3), 137–149 (2003)

    Article  Google Scholar 

  6. Embrey, D.G., Yates, L., Mott, D.H.: Effects of neuro-developmental treatment and orthoses on knee flexion during gait: A single-subject design. Physical Therapy 70(10), 626–637 (1990)

    Google Scholar 

  7. Brown, C., Hillman, S., Richardson, A., Herman, J., Robb, J.: Reliability and validity of the visual gait assessment scale for children with hemiplegic cerebral palsy when used by experienced and inexperienced observers. Gait & Posture 27(4), 648–652 (2008)

    Article  Google Scholar 

  8. Ong, A., Hillman, S., Robb, J.: Reliability and validity of the edinburgh visual gait score for cerebral palsy when used by inexperienced observers. Gait & Posture 28(2), 323–326 (2008)

    Article  Google Scholar 

  9. Kempen, J., de Groot, V., Knol, D., Polman, C., Lankhorst, G., Beckerman, H.: Community walking can be assessed using a 10 metre timed walk test. Multiple Sclerosis Journal 17(8), 980–990 (2011)

    Article  Google Scholar 

  10. Nordin, E., Lindelöf, N., Rosendahl, E., Jensen, J., Lundin-Olsson, L.: Prognostic validity of the timed up-and-go test, a modified get-up-and-go test, staff’s global judgement and fall history in evaluating fall risk in residential care facilities. Age and Ageing 37(4), 442–448 (2008)

    Article  Google Scholar 

  11. Potter, J.M., Evans, A.L., Duncan, G.: Gait speed and activities of daily living function in geriatric patients. Archives of Physical Medicine and Rehabilitation 76(11), 997–999 (1995)

    Article  Google Scholar 

  12. Cesari, M., Kritchevsky, S.B., Penninx, B.W.H.J., Nicklas, B.J., Simonsick, E.M., Newman, A.B., Tylavsky, F.A., Brach, J.S., Satterfield, S., Bauer, D.C., Visser, M., Rubin, S.M., Harris, T.B., Pahor, M.: Prognostic value of usual gait speed in well-functioning older people - results from the health, aging and body composition study. Journal of the American Geriatrics Society 53(10), 1675–1680 (2005)

    Article  Google Scholar 

  13. Buchner, D.M., Larson, E.B., Wagner, E.H., Koepsell, T.D., De Lateur, B.J.: Evidence for a non-linear relationship between leg strength and gait speed. Age and Ageing 25(5), 386–391 (1996)

    Article  Google Scholar 

  14. Russell, E., Braun, B., Hamill, J.: Does stride length influence metabolic cost and biomechanical risk factors for knee osteoarthritis in obese women? Clinical Biomechanics 25(5), 438–443 (2010)

    Article  Google Scholar 

  15. Crenshaw, S.J., Richards, J.G.: A method for analyzing joint symmetry and normalcy, with an application to analyzing gait. Gait & Posture 24(4), 515–521 (2006)

    Article  Google Scholar 

  16. Schutte, L.M., Narayanan, U., Stout, J.L., Selber, P., Gage, J.R., Schwartz, M.H.: An index for quantifying deviations from normal gait. Gait & Posture 11(1), 25–31 (2000)

    Article  Google Scholar 

  17. Schwartz, M.H., Rozumalski, A.: The gait deviation index: A new comprehensive index of gait pathology. Gait & Posture 28(3), 351–357 (2008)

    Article  Google Scholar 

  18. Baker, R., McGinley, J.L., Schwartz, M.H., Beynon, S., Rozumalski, A., Graham, H.K., Tirosh, O.: The gait profile score and movement analysis profile. Gait & Posture 30(3), 265–269 (2009)

    Article  Google Scholar 

  19. Beynon, S., McGinley, J.L., Dobson, F., Baker, R.: Correlations of the gait profile score and the movement analysis profile relative to clinical judgments. Gait & Posture 32(1), 129–132 (2010)

    Article  Google Scholar 

  20. Sadeghi, H., Allard, P., Prince, F., Labelle, H.: Symmetry and limb dominance in able-bodied gait: A review. Gait & Posture 12(1), 34–45 (2000)

    Article  Google Scholar 

  21. Zifchock, R., Davis, I., Higginson, J., Royer, T.: The symmetry angle: A novel, robust method of quantifying asymmetry. Gait & Posture 27(4), 622–627 (2008)

    Article  Google Scholar 

  22. Moe-Nilssen, R., Helbostad, J.L.: Estimation of gait cycle characteristics by trunk accelerometry. Journal of Biomechanics 37(1), 121–126 (2004)

    Article  Google Scholar 

  23. Gouwanda, D., Senanayake, A.S.M.N.: Identifying gait asymmetry using gyroscopes-a cross-correlation and normalized symmetry index approach. Journal of Biomechanics 44(5), 972–978 (2011)

    Article  Google Scholar 

  24. Sant’Anna, A., Wickström, N.: A symbol-based approach to gait analysis from acceleration signals: Identification and detection of gait events and a new measure of gait symmetry. IEEE Transactions on Information Technology in Biomedicine 14(5), 1180–1187 (2010)

    Article  Google Scholar 

  25. Sant’Anna, A., Salarian, A., Wickström, N.: A new measure of movement symmetry in early parkinson’s disease patients using symbolic processing of inertial sensor data. IEEE Transaction on biomedical Engineering 58(7) (2011)

    Google Scholar 

  26. Tranberg, R., Saari, T., Zügner, R., Kärrholm, J.: Simultaneous measurements of knee motion using an optical tracking system and radiostereometric analysis (RSA). Acta Orthopaedica 82(2), 171–176 (2011)

    Article  Google Scholar 

  27. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44(3), 837–845 (1988)

    Article  MATH  Google Scholar 

  28. McGraw, K.O., Wong, S.P.: Forming inferences about some intraclass correlation coefficients. Psychological Methods 1, 30–46 (1996)

    Article  Google Scholar 

  29. Kennedy, D., Stratford, P., Wessel, J., Gollish, J., Penney, D.: Assessing stability and change of four performance measures: a longitudinal study evaluating outcome following total hip and knee arthroplasty. BMC Musculoskeletal Disorders 6(1), 3 (2005)

    Article  Google Scholar 

  30. Aminian, K., Rezakhanlou, K., De Andres, E., Fritsch, C., Leyvraz, P.F., Robert, P.: Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Medical and Biological Engineering and Computing 37, 686–691 (1999)

    Article  Google Scholar 

  31. Macnicol, M., McHardy, R., Chalmers, J.: Exercise testing before and after hip arthroplasty. Journal of Bone and Joint Surgery - British 62-B(3), 326–331 (1980)

    Google Scholar 

  32. Palombaro, K.M., Craik, R.L., Mangione, K.K., Tomlinson, J.D.: Determining meaningful changes in gait speed after hip fracture. Physical Therapy 86(6), 809–816 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sant’ Anna, A., Wickström, N., Eklund, H., Zügner, R., Tranberg, R. (2013). Assessment of Gait Symmetry and Gait Normality Using Inertial Sensors: In-Lab and In-Situ Evaluation. In: Gabriel, J., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2012. Communications in Computer and Information Science, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38256-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38256-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38255-0

  • Online ISBN: 978-3-642-38256-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics