Skip to main content

Air Data Sensor Fault Detection Using Kinematic Relations

  • Conference paper
Advances in Aerospace Guidance, Navigation and Control

Abstract

This paper presents a Fault Detection and Isolation (FDI) method for Air Data Sensors (ADS) of aircraft. In the most general case, fault detection of these sensors on modern aircraft is performed by a logic that selects one of, or combines three redundant measurements. Such a method is compliant with current airworthiness regulations. However, in the framework of the global aircraft optimization for future and upcoming aircraft, it could be required, e.g. to extend the availability of sensor measurements. So, an improvement of the state of practice could be useful. Introducing a form of analytical redundancy of these measurements can increase the fault detection performance and result in a weight saving of the aircraft because there is no necessity anymore to increase the number of sensors. Furthermore, the analytical redundancy can contribute to the structural design optimization. The analytical redundancy in this method is introduced using an adaptive form of the Extended Kalman Filter (EKF). This EKF uses the kinematic relations of the aircraft and makes a state reconstruction from the available measurements possible. From this estimated state, an estimated output is calculated and compared to the measurements. Through observing a metric derived from the innovation of the Extended Kalman Filter (EKF), the performance of each of the redundant sensors is monitored. This metric is then used to automatically isolate the failing sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allerton, D.J., Jia, H.: A Review of Multisensor Fusion Methodologies for Aircraft Navigation Systems. Journal of Navigation 58(3), 405 (2005), doi:10.1017/S0373463305003383

    Article  Google Scholar 

  2. Berdjag, D., Cieslak, J., Zolghadri, A.: Fault diagnosis and monitoring of oscillatory failure case in aircraft inertial system. Control Engineering Practice 20(12), 1410–1425 (2012), http://www.sciencedirect.com/science/article/pii/S0967066112001682

    Article  Google Scholar 

  3. Berdjag, D., Zolghadri, A., Cieslak, J., Goupil, P.: Fault detection and isolation for redundant aircraft sensors. In: 2010 Conference on Control and Fault-Tolerant Systems (SysTol), vol. 1, pp. 137–142. Ieee, Nice (2010), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5675993 , doi:10.1109/SYSTOL.2010.5675993

    Chapter  Google Scholar 

  4. Cervia, F., Denti, E., Galatolo, R., Schettini, F.: Air Data Computation in Fly-By-Wire Flight-Control Systems. Journal of Aircraft 43(2), 450–455 (2006), http://arc.aiaa.org/doi/abs/10.2514/1.16270 , doi:10.2514/1.16270

    Article  Google Scholar 

  5. Chu, Q.P., Mulder, J.A., Sridhar, J.K.: Decomposition of Aircraft State and Parameter Estimation Problems. In: Proceedings of the 10th IFAC Symposium on System Identification, vol. 3, pp. 61–66. Danish Automation Society, Copenhagen (1994)

    Google Scholar 

  6. Colgren, R., Frye, M., Olson, W.: A Proposed System Architecture for Estimation of Angle-Of-Attack and Sideslip Angle. In: AIAA Guidance, Navigation and Control Conference, pp. 743–750. AIAA (1999)

    Google Scholar 

  7. Del Gobbo, D., Napolitano, M., Famouri, P., Innocenti, M.: Experimental application of extended Kalman filtering for sensor validation. IEEE Transactions on Control Systems Technology 9(2), 376–380 (2001), doi:10.1109/87.911389

    Article  Google Scholar 

  8. Duke, E.L., Antoniewicz, R.F., Krambeer, K.D.: Derivation and Definition of a Linear Aircraft model. Tech. rep., NASA (1988)

    Google Scholar 

  9. Eubank, R.D., Atkins, E.M., Ogura, S.: Fault Detection and Fail-Safe Operation with a Multiple-Redundancy Air-Data System. In: AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, pp. 1–14 (August 2010)

    Google Scholar 

  10. Favre, C.: Fly-by-wire for commercial aircraft: the Airbus experience. International Journal of Control 59(1), 139–157 (1994)

    Article  Google Scholar 

  11. Freeman, P., Seiler, P., Balas, G.J.: Robust Fault Detection for Commercial Transport Air Data Probes. In: 18th IFAC World Congress. IFAC, Milan (2011)

    Google Scholar 

  12. Goupil, P., Marcos, A.: Advanced Diagnosis for Sustainable Flight Guidance and Control: The European ADDSAFE Project. SAE Technical Paper 2011-01-2804 (2011), doi:10.4271/2011-01-2804

    Google Scholar 

  13. Goupil, P., Marcos, A.: Industrial benchmarking and evaluation of ADDSAFE FDD designs. In: 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Mexico City, Mexico (2012)

    Google Scholar 

  14. Grewal, M.S., Andrews, A.P.: Applications of Kalman Filtering in Aerospace 1960 to the Present. IEEE Control Systems Magazine 30(3), 69–78 (2010)

    Article  MathSciNet  Google Scholar 

  15. Hajiyev, C.: Testing the covariance matrix of the innovation sequence with sensor / actuator fault detection applications. International Journal of Control and Signal Processing 24(9), 717–730 (2010), doi:10.1002/acs.1160

    Article  MathSciNet  MATH  Google Scholar 

  16. Houck, D., Atlas, L.: Air Data Sensor Failure Detection. In: 17th Digital Avionics Systems Conference. AIAA/IEEE/SAE (May 1979, 1998)

    Google Scholar 

  17. Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, New York (1970)

    MATH  Google Scholar 

  18. Lombaerts, T.J.J.: Fault Tolerant Flight Control, A Physical Model Approach. Phd thesis, Delft University of Technology (2010)

    Google Scholar 

  19. Mehra, R.K., Peschon, J.: An Innovations Approach to Fault Detection and Diagnosis in Dynamic Systems. Automatica 7, 637–640 (1971)

    Article  Google Scholar 

  20. Mulder, J.A., Chu, Q.P., Sridhar, J.K., Breeman, J.H., Laban, M.: Non-linear aircraft flight path reconstruction review and new advances. Progress in Aerospace Sciences 35(7), 673–726 (1999)

    Article  Google Scholar 

  21. Soken, H.E., Hajiyev, C.: Fault Tolerant Attitude Estimation for Pico Satellites Using Robust Adaptive UKF. In: 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. IFAC (2012)

    Google Scholar 

  22. Traverse, P., Lacaze, I., Souyris, J.: Airbus fly-by-wire: A total approach to dependability. In: Proceedings of the 18th IFIP World Computer Congress, Toulouse, France, pp. 191–212 (2004)

    Google Scholar 

  23. Van Eykeren, L., Chu, Q.P., Mulder, J.A.: Sensor Fault Detection and Isolation using Adaptive Extended Kalman Filter. In: 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 1155–1160. IFAC, Mexico City (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurens van Eykeren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Eykeren, L., Chu, Q. (2013). Air Data Sensor Fault Detection Using Kinematic Relations. In: Chu, Q., Mulder, B., Choukroun, D., van Kampen, EJ., de Visser, C., Looye, G. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38253-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38253-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38252-9

  • Online ISBN: 978-3-642-38253-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics