Cloud Computing for Nanophotonic Simulations

  • Nikolay L. Kazanskiy
  • Pavel G. Serafimovich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7715)


Design and analysis of complex nanophotonic and nanoelectronic structures require significant computing resources. Cloud computing infrastructure allows distributed parallel applications to achieve greater scalability and fault tolerance. The problems of effective use of high-performance computing systems for modeling and simulation of subwavelength diffraction gratings are considered. Rigorous Coupled-Wave Analysis (RCWA) is adapted to cloud computing environment. In order to accomplish this, data flow of the RCWA is analyzed and CPU-intensive operations are converted to data-intensive operations. The generated data sets are structured in accordance with the requirements of MapReduce technology.


cloud computing subwavelength diffraction grating optimization scatterometry MapReduce 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Golub, M.A., Kazanskii, N.L., Sisakyan, I.N., Soifer, V.A.: Computational experiment with plane optical elements. Optoelectronics, Instrumentation and Data Processing (1), 78–89 (1988) (in Russian)Google Scholar
  2. 2.
    Kazanskiy, N.L.: Mathematical simulation of optical systems. SSAU, Samara (2005) (in Russian)Google Scholar
  3. 3.
    Kazanskiy, N.L., Serafimovich, P.G., Khonina, S.N.: Harnessing the guided-mode resonance to design nanooptical transmission spectral filters. Optical Memory & Neural Networks (Information Optics) 19(4), 318–324 (2010)CrossRefGoogle Scholar
  4. 4.
    Golovashkin, D.L., Kazanskiy, N.L.: Solving Diffractive Optics Problem using Graphics Processing Units. Optical Memory and Neural Networks (Information Optics) 20(2), 85–89 (2011)CrossRefGoogle Scholar
  5. 5.
    Moharam, M.G., Pommet, D.A., Grann, E.B.: Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach. J. Opt. Soc. Am. A 12(5), 1077–1086 (1995)CrossRefGoogle Scholar
  6. 6.
    Gystis, E., Gaylord, T.: Three-dimensional (vector) rigorous coupled wave analysis of anisotropic grating diffraction. J. Opt. Soc. Am. A 7, 1399–1419 (1990)CrossRefGoogle Scholar
  7. 7.
    Lalanne, P., Morris, G.M.: Highly improved convergence of the coupled-wave method for TM polarization. J. Opt. Soc. Am. A 13(4), 779–784 (1996)CrossRefGoogle Scholar
  8. 8.
    Li, L.: Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 13(9), 1870–1876 (1996)CrossRefGoogle Scholar
  9. 9.
    Bezus, E.A., Doskolovich, L.L., Kazanskiy, N.L.: Evanescent-wave interferometric nanoscale photolithography using guided-mode resonant gratings. Microelectronic Engineering 88(2), 170–174 (2011)CrossRefGoogle Scholar
  10. 10.
    Bezus, E.A., Doskolovich, L.L., Kazanskiy, N.L.: Scattering suppression in plasmonic optics using a simple two-layer dielectric structure. Applied Physics Letters 98(22), 221108 (3 p.) (2011)Google Scholar
  11. 11.
    Armbrust, M., et al.: A view of cloud computing. Communications of the ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  12. 12.
    Volotovskiy, S.G., Kazanskiy, N.L., Seraphimovich, P.G., Kharitonov, S.I.: Distributed software for parallel calculation of diffractive optical elements on web-server and cluster. In: Proc. IASTED, pp. 69–73. ACTA Press (2002)Google Scholar
  13. 13.
    Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI-The Complete Reference. The MPI Core, vol. 1. MIT Press, Cambridge (1998)Google Scholar
  14. 14.
    Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Communications of the ACM 53(1), 72–77 (2010)CrossRefGoogle Scholar
  15. 15. (Tested June 15, 2011)
  16. 16.
    Venner, J.: Pro Hadoop. Springer (2009)Google Scholar
  17. 17.
    Voevodin, V.V.: Mapping computational problems in computer architecture. Computational Methods and Programming: New Information Technologies 1(2), 37–44 (2000) (in Russian)MathSciNetGoogle Scholar
  18. 18.
    Popov, S.B.: Modeling the task information structure in parallel image processing. Computer Optics 34(2), 231–242 (2010) (in Russian)Google Scholar
  19. 19.
    Soifer, V.A. (ed.): Computer Image Processing, Part I: Basic concepts and theory, 283 p. VDM Verlag Dr. Muller e.K. (2009)Google Scholar
  20. 20.
    Born, M., Wolf, E.: Principles of Optics. Pergamon, Oxford (1980)Google Scholar
  21. 21.
    Soifer, V.A.: Nanophotonics and diffractive optics. Computer Optics 32(2), 110–118 (2008) (in Russian)Google Scholar
  22. 22.
    Soifer, V.A., Kotlyar, V.V., Doskolovich, L.L.: Diffractive optical elements in nanophotonic devices. Computer Optics 33(4), 352–368 (2009) (in Russian)Google Scholar
  23. 23.
    Kazanskiy, N.L., Serafimovich, P.G., Popov, S.B., Khonina, S.N.: Using guided-mode resonance to design nano-optical spectral transmission filters. Computer Optics 34(2), 162–168 (2010) (in Russian)Google Scholar
  24. 24.
    Belotelov, V.I., Doskolovich, L.L., Zvezdin, A.K.: Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems. Physical Review Letters 98(7), 5 p. (2007)CrossRefGoogle Scholar
  25. 25.
    Bykov, D.A., Doskolovich, L.L., Soifer, V.A., Kazanskiy, N.L.: Extraordinary Magneto-Optical Effect of a Change in the Phase of Diffraction Orders in Dielectric Diffraction Gratings. Journal of Experimental and Theoretical Physics 111(6), 967–974 (2010) (in Russian)CrossRefGoogle Scholar
  26. 26.
    Bezus, E.A., Doskolovich, L.L., Kazanskiy, N.L., Soifer, V.A., Kharitonov, S.I., Pizzi, M., Perlo, P.: The design of the diffractive optical elements to focus surface plasmons. Computer Optics 33(2), 185–192 (2009) (in Russian)Google Scholar
  27. 27.
    Bezus, E.A., Doskolovich, L.L., Kazanskiy, N.L., Soifer, V.A., Kharitonov, S.I.: Design of diffractive lenses for focusing surface plasmons. Journal of Optics 12(1), 015001 (7 p.) (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nikolay L. Kazanskiy
    • 1
  • Pavel G. Serafimovich
    • 2
  1. 1.Image Processing Systems Institute of the Russian Academy of SciencesSamaraRussia
  2. 2.S.P. Korolyov Samara State Aerospace UniversitySamaraRussia

Personalised recommendations