All-Optical Ultrafast Adder/Subtractor and MUX/DEMUX Circuits with Silicon Microring Resonators

  • Purnima Sethi
  • Sukhdev Roy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7715)


We present designs of all-optical ultrafast simultaneous NOR logic gate/Half-Adder/Subtractor, Full-Adder/Subtractor and Multiplexer/De-Multiplexer circuits using add-drop silicon microring resonators. The proposed circuits require less number of switches and inputs for realization of the desired logic compared to earlier reported designs. Multiplexer/De-Multiplexer operations can be realized from the same circuit by simply interchanging the inputs and outputs. Lower energy consumption and delays along with reconfigurability and compactness make them attractive for practical applications.


all-optical switching optical computing microring resonator directed logic silicon photonics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roy, S.: Editorial, Special issue on Optical Computing Circuits, Devices and Systems. IET Cir., Dev. Sys. 5, 73–75 (2011)CrossRefGoogle Scholar
  2. 2.
    Caulfield, H.J., Dolev, S.: Why future supercomputing requires optics. Nature Photon. 4, 261–263 (2010)CrossRefGoogle Scholar
  3. 3.
    Xu, Q., Schmidt, B., Pradhan, S., Lipson, M.: Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)CrossRefGoogle Scholar
  4. 4.
    Xu, Q., Soref, R.: Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Opt. Exp. 19, 5244–5259 (2011)CrossRefGoogle Scholar
  5. 5.
    Zhang, L., Ding, J., Tian, Y., Ji, R., Yang, L., Chen, H., Zhou, P., Lu, Y., Zhu, W., Min, R.: Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations. Opt. Exp. 20, 11605–11614 (2012)CrossRefGoogle Scholar
  6. 6.
    Tian, Y.H., Zhang, L., Ji, R.Q., Yang, L., Zhou, P., Chen, H.T., Ding, J.F., Zhu, W.W., Lu, Y.Y., Jia, L.X., Fang, Q., Yu, M.B.: Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators. Opt. Lett. 36, 1650–1652 (2011)CrossRefGoogle Scholar
  7. 7.
    Lin, S., Ishikawa, Y., Wada, K.: Demonstration of optical computing logics based on binary decision diagram. Opt. Exp. 20, 1378–1384 (2012)CrossRefGoogle Scholar
  8. 8.
    Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nature Photon. 4, 518–526 (2010)CrossRefGoogle Scholar
  9. 9.
    Lipson, M.: Guiding, modulating, and emitting light on Silicon-challenges and opportunities. J. Lightwave Technol. 23, 4222–4238 (2005)CrossRefGoogle Scholar
  10. 10.
    Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Selvaraja, S.K., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photon. Rev. 6, 47–73 (2012)CrossRefGoogle Scholar
  11. 11.
    Guha, B., Kyotoku, B.B.C., Lipson, M.: CMOS-compatible athermal silicon microring resonators. Opt. Exp. 18, 3487–3493 (2010)CrossRefGoogle Scholar
  12. 12.
    Chin, A., Lee, K.Y., Lin, B.C., Horng, S.: Picosecond photoresponse of carriers in Si ion-implanted Si. Appl. Phys. Lett. 69, 653–655 (1996)CrossRefGoogle Scholar
  13. 13.
    Weiss, S.M., Molinari, M., Fauchet, P.M.: Temperature stability for silicon-based photonic bandgap structures. Appl. Phys. Lett. 83, 1980–1982 (2003)CrossRefGoogle Scholar
  14. 14.
    Ibrahim, T.A., Cao, W., Kim, Y., Li, J., Goldhar, J., Ho, P.T., Lee, C.H.: All-optical switching in a laterally coupled microring resonator by carrier injection. IEEE Photon. Technol. Lett. 15, 36–38 (2003)CrossRefGoogle Scholar
  15. 15.
    Almeida, V.R., Barrios, C.A., Panepucci, R.R., Lipson, M.: All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)CrossRefGoogle Scholar
  16. 16.
    Almeida, V.R., Barrios, C.A., Panepucci, R.R., Lipson, M., Foster, M.A., Quzounov, D.G., Gaeta, A.L.: All-optical switching on a silicon chip. Opt. Lett. 29, 2867–2869 (2004)CrossRefGoogle Scholar
  17. 17.
    Xu, Q., Lipson, M.: All-optical logic based on silicon micro-ring resonators. Opt. Exp. 15, 924–929 (2007)CrossRefGoogle Scholar
  18. 18.
    Roy, S., Sethi, P., Topolancik, J., Vollmer, F.: All-optical reversible logic gates with optically controlled bacteriorhodopsin protein-coated microresonators. Adv. Opt. Technol. 2012, 727206-12 (2012)Google Scholar
  19. 19.
    Roy, S., Prasad, M., Topolancik, T., Vollmer, F.: All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits. J. Appl. Phys 107, 053115-24 (2010)Google Scholar
  20. 20.
    Li, C., Na, D.: Optical switching in silicon nano waveguide ring resonators based on Kerr effect and TPA effect. Chin. Phys. Lett. 20, 0542031-4 (2009)Google Scholar
  21. 21.
    Yariv, A.: Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett. 36, 321 (2000)CrossRefGoogle Scholar
  22. 22.
    Preble, S.F., Xu, Q., Lipson, M.: Changing the color of light in a silicon resonator. Nature Photon. 1, 293–296 (2007)CrossRefGoogle Scholar
  23. 23.
    Preble, S.F., Xu, Q., Schmidt, B.S., Lipson, M.: Ultrafast all-optical modulation on a silicon chip. Opt. Lett. 30, 2891–2893 (2005)CrossRefGoogle Scholar
  24. 24.
    Caulfied, H.J., Soref, R.A.: Universal reconfigurable optical logic with silicon-on-insulator resonant structures. Photonics Nanostruct. Fundam. Appl. 5, 14–20 (2007)CrossRefGoogle Scholar
  25. 25.
    Manolatou, C., Lipson, M.: All-optical silicon modulators based on carrier injection by two-photon absorption. J. Lightwave Technol. 24, 1433–1439 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Purnima Sethi
    • 1
  • Sukhdev Roy
    • 1
  1. 1.Department of Physics and Computer ScienceDayalbagh Educational InstituteIndia

Personalised recommendations