Skip to main content

Any Monotone Property of 3-Uniform Hypergraphs Is Weakly Evasive

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7876))

Abstract

For a Boolean function f, let D(f) denote its deterministic decision tree complexity, i.e., minimum number of (adaptive) queries required in worst case in order to determine f. In a classic paper, Rivest and Vuillemin [18] show that any non-constant monotone property \(\mathcal{P} : \{0, 1\}^{n \choose 2} \to \{0, 1\}\) of n-vertex graphs has \(D(\mathcal{P}) = \Omega(n^2).\)

We extend their result to 3-uniform hypergraphs. In particular, we show that any non-constant monotone property \(\mathcal{P} : \{0, 1\}^{n \choose 3} \to \{0, 1\}\) of n-vertex 3-uniform hypergraphs has \(D(\mathcal{P}) = \Omega(n^3).\)

Our proof combines the combinatorial approach of Rivest and Vuillemin with the topological approach of Kahn, Saks, and Sturtevant. Interestingly, our proof makes use of Vinogradov’s Theorem (weak Goldbach Conjecture), inspired by its recent use by Babai et. al. [1] in the context of the topological approach. Our work leaves the generalization to k-uniform hypergraphs as an intriguing open question.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L., Banerjee, A., Kulkarni, R., Naik, V.: Evasiveness and the Distribution of Prime Numbers. In: STACS 2010, pp. 71–82 (2010)

    Google Scholar 

  2. Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of Boolean functions and its application to percolation. Inst. Hautes tudes Sci. Publ. (MATH), 90 (1999)

    Google Scholar 

  3. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a survey. Theor. Comput. Sci. 288(1), 21–43 (2002)

    Article  MATH  Google Scholar 

  4. Chakrabarti, A., Khot, S., Shi, Y.: Evasiveness of Subgraph Containment and Related Properties. SIAM J. Comput. 31(3), 866–875 (2001)

    Article  MathSciNet  Google Scholar 

  5. Haselgrove, C.B.: Some theorems on the analytic theory of numbers. J. London Math. Soc. 36, 273–277 (1951)

    Article  MathSciNet  Google Scholar 

  6. Hayes, T.P., Kutin, S., van Melkebeek, D.: The Quantum Black-Box Complexity of Majority. Algorithmica 34(4), 480–501 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kulkarni, R.: Evasiveness Through A Circuit Lens. To appear in ITCS 2013 (2013)

    Google Scholar 

  8. Kahn, J., Saks, M.E., Sturtevant, D.: A topological approach to evasiveness. Combinatorica 4(4), 297–306 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kushilevitz, E., Mansour, Y.: Learning Decision Trees Using the Fourier Spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kulkarni, R., Santha, M.: Query complexity of matroids. Electronic Colloquium on Computational Complexity (ECCC) 19, 63 (2012)

    Google Scholar 

  11. Linial, N., Mansour, Y., Nisan, N.: Constant Depth Circuits, Fourier Transform, and Learnability. J. ACM 40(3), 607–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lutz, F.H.: Some Results Related to the Evasiveness Conjecture. Comb. Theory, Ser. B 81(1), 110–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Montanaro, A., Osborne, T.: On the communication complexity of XOR functions. CoRR abs/0909.3392 (2009)

    Google Scholar 

  14. Nisan, N., Szegedy, M.: On the Degree of Boolean Functions as Real Polynomials. Computational Complexity 4, 301–313 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nisan, N., Wigderson, A.: On Rank vs. Communication Complexity. Combinatorica 15(4), 557–565 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oliver, R.: Fixed-point sets of group actions on finite acyclic complexes. Comment. Math. Helv. 50, 155–177 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. O’Donnell, R., Saks, M.E., Schramm, O., Servedio, R.A.: Every decision tree has an influential variable. In: FOCS 2005, pp. 31–39 (2005)

    Google Scholar 

  18. Rivest, R.L., Vuillemin, J.: On Recognizing Graph Properties from Adjacency Matrices. Theor. Comput. Sci. 3(3), 371–384 (1976)

    Article  MathSciNet  Google Scholar 

  19. Robinson, D.J.S.: A Course in the Theory of Groups, 2nd edn. Springer (1996)

    Google Scholar 

  20. Saks, M.E., Wigderson, A.: Probabilistic Boolean Decision Trees and the Complexity of Evaluating Game Trees. In: FOCS 1986, pp. 29–38 (1986)

    Google Scholar 

  21. Shi, Y., Zhang, Z.: Communication Complexities of XOR functions. CoRR abs/0808.1762 (2008)

    Google Scholar 

  22. Zhang, Z., Shi, Y.: On the parity complexity measures of Boolean functions. Theor. Comput. Sci. 411(26-28), 2612–2618 (2010)

    Article  MATH  Google Scholar 

  23. Vinogradov, I.M.: The Method of Trigonometrical Sums in the Theory of Numbers. Trav. Inst. Math. Stekloff 10 (1937) (Russian)

    Google Scholar 

  24. Yao, A.C.-C.: Monotone Bipartite Graph Properties are Evasive. SIAM J. Comput. 17(3), 517–520 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kulkarni, R., Qiao, Y., Sun, X. (2013). Any Monotone Property of 3-Uniform Hypergraphs Is Weakly Evasive. In: Chan, TH.H., Lau, L.C., Trevisan, L. (eds) Theory and Applications of Models of Computation. TAMC 2013. Lecture Notes in Computer Science, vol 7876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38236-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38236-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38235-2

  • Online ISBN: 978-3-642-38236-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics