Skip to main content

A Quantum Jensen-Shannon Graph Kernel Using the Continuous-Time Quantum Walk

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7877))

Abstract

In this paper, we use the quantum Jensen-Shannon divergence as a means to establish the similarity between a pair of graphs and to develop a novel graph kernel. In quantum theory, the quantum Jensen-Shannon divergence is defined as a distance measure between quantum states. In order to compute the quantum Jensen-Shannon divergence between a pair of graphs, we first need to associate a density operator with each of them. Hence, we decide to simulate the evolution of a continuous-time quantum walk on each graph and we propose a way to associate a suitable quantum state with it. With the density operator of this quantum state to hand, the graph kernel is defined as a function of the quantum Jensen-Shannon divergence between the graph density operators. We evaluate the performance of our kernel on several standard graph datasets from bioinformatics. We use the Principle Component Analysis (PCA) on the kernel matrix to embed the graphs into a feature space for classification. The experimental results demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)

    Google Scholar 

  2. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCS-CRL-99-10, Santa Cruz, CA, USA (1999)

    Google Scholar 

  3. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of International Conference on Machine Learning, pp. 321–328 (2003)

    Google Scholar 

  4. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proceedings of the IEEE International Conference on Data Mining, pp. 74–81 (2005)

    Google Scholar 

  5. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 1, 1–48 (2010)

    Google Scholar 

  6. Lamberti, P., Majtey, A., Borras, A., Casas, M., Plastino, A.: Metric character of the quantum jensen-shannon divergence. Physical Review A 77, 052311 (2008)

    Google Scholar 

  7. Bai, L., Hancock, E.R.: Graph kernels from the jensen-shannon divergence. Journal of Mathematical Imaging and Vision (to appear)

    Google Scholar 

  8. Majtey, A., Lamberti, P., Prato, D.: Jensen-shannon divergence as a measure of distinguishability between mixed quantum states. Physical Review A 72, 052310 (2005)

    Google Scholar 

  9. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Physical Review A 58, 915 (1998)

    Article  MathSciNet  Google Scholar 

  10. Dirac, P.: The Principles of Quantum Mechanics, 4th edn. Oxford Science Publications (1958)

    Google Scholar 

  11. Kempe, J.: Quantum random walks: an introductory overview. Contemporary Physics 44, 307–327 (2003)

    Article  Google Scholar 

  12. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge university press (2010)

    Google Scholar 

  13. Martins, A.F., Smith, N.A., Xing, E.P., Aguiar, P.M., Figueiredo, M.A.: Nonextensive information theoretic kernels on measures. Journal of Machine Learning Research 10, 935–975 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Konder, R., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In: Proceedings of International Conference on Machine Learning, pp. 315–322 (2002)

    Google Scholar 

  15. Neuhaus, M., Bunke, H.: Bridging the gap between graph edit distance and kernel machines. World Scientific (2007)

    Google Scholar 

  16. Escolano, F., Hancock, E.R., Lozano, M.A.: Heat diffusion: Thermodynamic depth complexity of networks. Physical Review E 85, 036206 (2012)

    Google Scholar 

  17. Dehmer, M.: Information processing in complex networks: Graph entropy and information functionals. Applied Mathematics and Computation 201, 82–94 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ren, P., Wilson, R.C., Hancock, E.R.: Graph characterization via ihara coefficients. IEEE Transactions on Neural Networks 22, 233–245 (2011)

    Article  Google Scholar 

  19. Schölkopf, B., Smola, A.J., Müller, K.R.: Kernel principal component analysis. In: Proceedings of International Conference on Artificial Neural Networks, pp. 583–588 (1997)

    Google Scholar 

  20. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods, pp. 185–208 (1999)

    Google Scholar 

  21. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2011)

    Google Scholar 

  22. Bai, L., Hancock, E.R., Ren, P.: A jensen-shannon kernel for hypergraphs. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 181–189. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Ren, P., Aleksic, T., Emms, D., Wilson, R., Hancock, E.: Quantum walks, ihara zeta functions and cospectrality in regular graphs. Quantum Information Processing 10, 405–417 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bai, L., Hancock, E.R., Torsello, A., Rossi, L. (2013). A Quantum Jensen-Shannon Graph Kernel Using the Continuous-Time Quantum Walk. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2013. Lecture Notes in Computer Science, vol 7877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38221-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38221-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38220-8

  • Online ISBN: 978-3-642-38221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics