Skip to main content

A Continuous-Time Quantum Walk Kernel for Unattributed Graphs

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7877))

Abstract

Kernel methods provide a way to apply a wide range of learning techniques to complex and structured data by shifting the representational problem from one of finding an embedding of the data to that of defining a positive semidefinite kernel. In this paper, we propose a novel kernel on unattributed graphs where the structure is characterized through the evolution of a continuous-time quantum walk. More precisely, given a pair of graphs, we create a derived structure whose degree of symmetry is maximum when the original graphs are isomorphic. With this new graph to hand, we compute the density operators of the quantum systems representing the evolutions of two suitably defined quantum walks. Finally, we define the kernel between the two original graphs as the quantum Jensen-Shannon divergence between these two density operators. The experimental evaluation shows the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. International Journal of Computer Vision 35, 13–32 (1999)

    Article  Google Scholar 

  2. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  3. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences 98, 4569 (2001)

    Article  Google Scholar 

  4. Kalapala, V., Sanwalani, V., Moore, C.: The structure of the united states road network. University of New Mexico (2003) (preprint)

    Google Scholar 

  5. Schölkopf, B., Smola, A.J.: Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT Press (2001)

    Google Scholar 

  6. Vapnik, V.: Statistical learning theory (1998)

    Google Scholar 

  7. Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Borgwardt, K., Kriegel, H.: Shortest-path kernels on graphs. In: Fifth IEEE International Conference on Data Mining, p. 8. IEEE (2005)

    Google Scholar 

  9. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Proceedings of the International Workshop on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics (2009)

    Google Scholar 

  10. Haussler, D.: Convolution kernels on discrete structures. Technical report, UC Santa Cruz (1999)

    Google Scholar 

  11. Bai, L., Hancock, E.: Graph kernels from the Jensen-Shannon divergence. Journal of Mathematical Imaging and Vision, 1–10 (2012)

    Google Scholar 

  12. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Physical Review A 58, 915 (1998)

    Article  MathSciNet  Google Scholar 

  13. Kempe, J.: Quantum random walks: an introductory overview. Contemporary Physics 44, 307–327 (2003)

    Article  Google Scholar 

  14. Emms, D., Wilson, R., Hancock, E.: Graph embedding using quantum commute times. Graph-Based Representations in Pattern Recognition, 371–382 (2007)

    Google Scholar 

  15. Rossi, L., Torsello, A., Hancock, E.R.: Approximate axial symmetries from continuous time quantum walks. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 144–152. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Majtey, A., Lamberti, P., Prato, D.: Jensen-Shannon divergence as a measure of distinguishability between mixed quantum states. Physical Review A 72, 052310 (2005)

    Google Scholar 

  17. Lamberti, P., Majtey, A., Borras, A., Casas, M., Plastino, A.: Metric character of the quantum Jensen-Shannon divergence. Physical Review A 77, 052311 (2008)

    Google Scholar 

  18. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge University Press (2010)

    Google Scholar 

  19. Briët, J., Harremoës, P.: Properties of classical and quantum jensen-shannon divergence. Physical review A 79, 52311 (2009)

    Article  Google Scholar 

  20. Torsello, A., Rossi, L.: Supervised learning of graph structure. Similarity-Based Pattern Recognition, 117–132 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rossi, L., Torsello, A., Hancock, E.R. (2013). A Continuous-Time Quantum Walk Kernel for Unattributed Graphs. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2013. Lecture Notes in Computer Science, vol 7877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38221-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38221-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38220-8

  • Online ISBN: 978-3-642-38221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics