Skip to main content

Basics on the Theory of Local Rings

  • Chapter
  • First Online:
  • 1299 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2080))

Abstract

The reader is assumed to have basic knowledge of the theory of commutative rings.

Let R be a commutative ring with an identity element and let \(f_{1},f_{2},\ldots,f_{m}\) be elements of R.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahn, J., Cho, Y.H., Park, J.P.: Generic initial ideals of Artinian ideals having Lefschetz properties or the strong Stanley property. J. Algebra 318(2), 589–606 (2007). doi:10.1016/j.jalgebra.2007.09.016. http://dx.doi.org/10.1016/j.jalgebra.2007.09.016

    Google Scholar 

  2. Aigner, M.: Combinatorial theory. In: Classics in Mathematics. Springer, Berlin (1997). Reprint of the 1979 original

    Google Scholar 

  3. Anderson, I.: Combinatorics of finite sets. Dover Publications Inc., Mineola (2002). Corrected reprint of the 1989 edition

    Google Scholar 

  4. Anderson, D.D., Winders, M.: Idealization of a module. J. Commut. Algebra 1(1), 3–56 (2009). doi:10.1216/JCA-2009-1-1-3. http://dx.doi.org/10.1216/JCA-2009-1-1-3

    Google Scholar 

  5. Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernšteĭn, I.N., Gelfand, I.M., Gelfand, S.I.: Schubert cells, and the cohomology of the spaces G ∕ P. Uspehi Mat. Nauk 28(3(171)), 3–26 (1973)

    Google Scholar 

  7. Boij, M., Laksov, D.: Nonunimodality of graded Gorenstein Artin algebras. Proc. Am. Math. Soc. 120(4), 1083–1092 (1994). doi:10.2307/2160222. http://dx.doi.org/10.2307/2160222

    Google Scholar 

  8. Boij, M., Migliore, J.C., Miró-Roig, R.M., Nagel, U., Zanello, F.: On the shape of a pure O-sequence. Mem. Am. Math. Soc. 218(1024), viii + 78 (2012)

    Google Scholar 

  9. Bollobás, B.: Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability. Cambridge University Press, Cambridge (1986).

    MATH  Google Scholar 

  10. Brenner, H., Kaid, A.: Syzygy bundles on \({\mathbb{P}}^{2}\) and the weak Lefschetz property. Ill. J. Math. 51(4), 1299–1308 (2007). http://projecteuclid.org/getRecord?id=euclid.ijm/1258138545

  11. de Bruijn, N.G., van Ebbenhorst Tengbergen, C., Kruyswijk, D.: On the set of divisors of a number. Nieuw Arch. Wiskunde (2) 23, 191–193 (1951)

    Google Scholar 

  12. Bruns, W., Herzog, J.: Cohen-Macaulay rings. In: Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  13. Buchsbaum, D.A., Eisenbud, D.: Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3. Am. J. Math. 99(3), 447–485 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Canfield, E.R.: On a problem of Rota. Adv. Math. 29(1), 1–10 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, C.P., Guo, A., Jin, X., Liu, G.: Trivariate monomial complete intersections and plane partitions. J. Commut. Algebra 3(4), 459–489 (2011). doi:10.1216/JCA-2011-3-4-459. http://dx.doi.org/10.1216/JCA-2011-3-4-459

    Google Scholar 

  16. Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math. 77, 778–782 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chevalley, C.: Classification des groups de Lie algébriques. Séminaire C. Chevalley, 1956–1958, 2 vols. Secrétariat mathématique, Paris (1958)

    Google Scholar 

  18. Chevalley, C.: Sur les décompositions cellulaires des espaces G ∕ B. In: Algebraic Groups and Their Generalizations: Classical Methods, University Park, PA, 1991. Proceedings of the Symposium on Pure Mathematics, vol. 56, pp. 1–23. American Mathematical Society, Providence (1994). With a foreword by Armand Borel

    Google Scholar 

  19. Cho, Y.H., Park, J.P.: Conditions for generic initial ideals to be almost reverse lexicographic. J. Algebra 319(7), 2761–2771 (2008). doi:10.1016/j.jalgebra.2008.01.014. http://dx.doi.org/10.1016/j.jalgebra.2008.01.014

    Google Scholar 

  20. Cimpoeaş, M.: Generic initial ideal for complete intersections of embedding dimension three with strong Lefschetz property. Bull. Math. Soc. Sci. Math. Roum. (N.S.) 50(98)(1), 33–66 (2007)

    Google Scholar 

  21. Cook II, D., Nagel, U.: The weak lefschetz property, monomial ideals, and lozenges. Illinois J. Math. 55(1), 377–395 (2012). MR3006693

    Google Scholar 

  22. Cook II, D., Nagel, U.: Enumerations deciding the weak lefschetz property (2011). Preprint, arXiv:1105.6062v2 [math.AC]

    Google Scholar 

  23. Conca, A.: Reduction numbers and initial ideals. Proc. Am. Math. Soc. 131(4), 1015–1020 (electronic) (2003). doi:10.1090/S0002-9939-02-06607-8. http://dx.doi.org/10.1090/S0002-9939-02-06607-8

  24. Conca, A., Krattenthaler, C., Watanabe, J.: Regular sequences of symmetric polynomials. Rend. Semin. Mat. Univ. Padova 121, 179–199 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Constantinescu, A.: Hilbert function and Betti numbers of algebras with Lefschetz property of order m. Commun. Algebra 36(12), 4704–4720 (2008). doi:10.1080/00927870802174074. http://dx.doi.org/10.1080/00927870802174074

    Google Scholar 

  26. Cook II, D., Nagel, U.: Hyperplane sections and the subtlety of the Lefschetz properties. J. Pure Appl. Algebra 216(1), 108–114 (2012). doi:10.1016/j.jpaa.2011.05.007. http://dx.doi.org/10.1016/j.jpaa.2011.05.007

  27. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra. In: Undergraduate Texts in Mathematics, 3rd edn. Springer, New York (2007). doi:10.1007/978-0-387-35651-8. http://dx.doi.org/10.1007/978-0-387-35651-8.

  28. Danilov, V.I.: The geometry of toric varieties. Uspekhi Mat. Nauk 33(2(200)), 85–134, 247 (1978)

    Google Scholar 

  29. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. (2) 51, 161–166 (1950)

    Google Scholar 

  30. Dilworth, R.P.: Some combinatorial problems on partially ordered sets. In: Proceedings of Symposia in Applied Mathematics, vol. 10, pp. 85–90. American Mathematical Society, Providence (1960)

    Google Scholar 

  31. Eisenbud, D.: Commutative algebra. In: Graduate Texts in Mathematics, vol. 150. Springer, New York (1995). With a view toward algebraic geometry

    Google Scholar 

  32. Eliahou, S., Kervaire, M.: Minimal resolutions of some monomial ideals. J. Algebra 129(1), 1–25 (1990). doi:10.1016/0021-8693(90)90237-I. http://dx.doi.org/10.1016/0021-8693(90)90237-I

    Google Scholar 

  33. Engel, K.: Sperner theory. In: Encyclopedia of Mathematics and Its Applications, vol. 65. Cambridge University Press, Cambridge (1997). doi:10.1017/CBO9780511574719. http://dx.doi.org/10.1017/CBO9780511574719

  34. Engel, K., Gronau, H.D.O.F.: Sperner theory in partially ordered sets. In: Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 78. BSB B.G. Teubner Verlagsgesellschaft, Leipzig (1985). With German, French and Russian summaries

    Google Scholar 

  35. Erdős, P.: Extremal problems in number theory. In: Proceedings of Symposia in Pure Mathematics, vol. VIII, pp. 181–189. American Mathematical Society, Providence (1965)

    Google Scholar 

  36. Freese, R.: An application of Dilworth’s lattice of maximal antichains. Discrete Math. 7, 107–109 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fulton, W.: Young tableaux. In: London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997). With applications to representation theory and geometry

    Google Scholar 

  38. Geramita, A.V.: Inverse systems of fat points: Waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals. In: The Curves Seminar at Queen’s, vol. X (Kingston, ON, 1995). Queen’s Papers in Pure and Applied Mathematics, vol. 102, pp. 2–114. Queen’s University, Kingston (1996)

    Google Scholar 

  39. Geramita, A.V., Harima, T., Migliore, J.C., Shin, Y.S.: The Hilbert function of a level algebra. Mem. Am. Math. Soc. 186(872), vi + 139 (2007)

    Google Scholar 

  40. Goodman, R., Wallach, N.R.: Representations and invariants of the classical groups. In: Encyclopedia of Mathematics and its Applications, vol. 68. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  41. Gordan, P., Nöther, M.: Ueber die algebraischen Formen, deren Hesse’sche Determinante identisch verschwindet. Math. Ann. 10(4), 547–568 (1876). doi:10.1007/BF01442264. http://dx.doi.org/10.1007/BF01442264

    Google Scholar 

  42. Greene, C., Kleitman, D.J.: Proof techniques in the theory of finite sets. In: Studies in Combinatorics. MAA Studies in Mathematics, vol. 17, pp. 22–79. Mathematical Association of America, Washington (1978)

    Google Scholar 

  43. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994). Reprint of the 1978 original

    Google Scholar 

  44. Gröbner, W.: Über irreduzible Ideale in kommutativen Ringen. Math. Ann. 110(1), 197–222 (1935). doi:10.1007/BF01448025. http://dx.doi.org/10.1007/BF01448025

  45. Gunston, T.K.: Cohomological degrees, Dilworth numbers and linear resolution. Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick. ProQuest LLC, Ann Arbor (1998). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9915442

  46. Hall, P.: On representatives of subsets. J. Lond. Math. Soc. S1-10(1), 26–30 (1935). doi:10.1112/jlms/s1-10.37.26

    Article  Google Scholar 

  47. Hall, B.C.: Lie groups, Lie algebras, and representations. In: Graduate Texts in Mathematics, vol. 222. Springer, New York (2003). An elementary introduction

    Google Scholar 

  48. Hara, M., Watanabe, J.: The determinants of certain matrices arising from the Boolean lattice. Discrete Math. 308(23), 5815–5822 (2008). doi:10.1016/j.disc.2007.09.055. http://dx.doi.org/10.1016/j.disc.2007.09.055

  49. Harima, T., Wachi, A.: Generic initial ideals, graded Betti numbers, and k-Lefschetz properties. Commun. Algebra 37(11), 4012–4025 (2009). doi:10.1080/00927870802502753. http://dx.doi.org/10.1080/00927870802502753

    Google Scholar 

  50. Harima, T., Watanabe, J.: The finite free extension of Artinian K-algebras with the strong Lefschetz property. Rend. Sem. Mat. Univ. Padova 110, 119–146 (2003). See errata in [51].

    Google Scholar 

  51. Harima, T., Watanabe, J.: Erratum to: “The finite free extension of Artinian K-algebras with the strong Lefschetz property” [Rend. Sem. Mat. Univ. Padova 110, 119–146 (2003); mr2033004]. Rend. Sem. Mat. Univ. Padova 112, 237–238 (2004)

    MathSciNet  MATH  Google Scholar 

  52. Harima, T., Watanabe, J.: The central simple modules of Artinian Gorenstein algebras. J. Pure Appl. Algebra 210(2), 447–463 (2007). doi:10.1016/j.jpaa.2006.10.016. http://dx.doi.org/10.1016/j.jpaa.2006.10.016

    Google Scholar 

  53. Harima, T., Watanabe, J.: The strong Lefschetz property for Artinian algebras with non-standard grading. J. Algebra 311(2), 511–537 (2007). doi:10.1016/j.jalgebra.2007.01.019. http://dx.doi.org/10.1016/j.jalgebra.2007.01.019

    Google Scholar 

  54. Harima, T., Watanabe, J.: The commutator algebra of a nilpotent matrix and an application to the theory of commutative Artinian algebras. J. Algebra 319(6), 2545–2570 (2008). doi:10.1016/j.jalgebra.2007.09.011. http://dx.doi.org/10.1016/j.jalgebra.2007.09.011

  55. Harima, T., Migliore, J.C., Nagel, U., Watanabe, J.: The weak and strong Lefschetz properties for Artinian K-algebras. J. Algebra 262(1), 99–126 (2003). doi:10.1016/S0021-8693(03)00038-3. http://dx.doi.org/10.1016/S0021-8693(03)00038-3

    Google Scholar 

  56. Harima, T., Sakaki, S., Wachi, A.: Generic initial ideals of some monomial complete intersections in four variables. Arch. Math. (Basel) 94(2), 129–137 (2010). doi:10.1007/s00013-009-0088-2. http://dx.doi.org/10.1007/s00013-009-0088-2

    Google Scholar 

  57. Herzog, J., Popescu, D.: The strong lefschetz property and simple extensions (2005). Preprint, arXiv:math/0506537

    Google Scholar 

  58. Hiller, H.L.: Schubert calculus of a Coxeter group. Enseign. Math. (2) 27(1, 2), 57–84 (1981)

    Google Scholar 

  59. Hiller, H.: Geometry of Coxeter groups. In: Research Notes in Mathematics, vol. 54. Pitman (Advanced Publishing Program), Boston (1982)

    Google Scholar 

  60. Humphreys, J.E.: Introduction to Lie algebras and representation theory. In: Graduate Texts in Mathematics, vol. 9. Springer, New York (1978). Second printing, revised

    Google Scholar 

  61. Humphreys, J.E.: Reflection groups and Coxeter groups. In: Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  62. Huneke, C., Ulrich, B.: General hyperplane sections of algebraic varieties. J. Algebr. Geom. 2(3), 487–505 (1993)

    MathSciNet  MATH  Google Scholar 

  63. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves, 2nd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2010). doi:10.1017/CBO9780511711985. http://dx.doi.org/10.1017/CBO9780511711985

  64. Iarrobino, A.: Associated graded algebra of a Gorenstein Artin algebra. Mem. Am. Math. Soc. 107(514), viii + 115 (1994)

    Google Scholar 

  65. Iarrobino, A., Kanev, V.: Power sums, Gorenstein algebras, and determinantal loci. In: Lecture Notes in Mathematics, vol. 1721. Springer, Berlin (1999). Appendix C by Iarrobino and Steven L. Kleiman

    Google Scholar 

  66. Ikeda, H.: Results on Dilworth and Rees numbers of Artinian local rings. Jpn. J. Math. (N.S.) 22(1), 147–158 (1996)

    Google Scholar 

  67. Ikeda, H., Watanabe, J.: The Dilworth lattice of Artinian rings. J. Commut. Algebra 1(2), 315–326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Jacobson, N.: Lie Algebras. Dover Publications, New York (1979). Republication of the 1962 original

    Google Scholar 

  69. Jurkiewicz, J.: Chow ring of projective nonsingular torus embedding. Colloq. Math. 43(2), 261–270 (1980/1981)

    Google Scholar 

  70. Kantor, W.M.: On incidence matrices of finite projective and affine spaces. Math. Z. 124, 315–318 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  71. Kaveh, K.: Note on cohomology rings of spherical varieties and volume polynomial. J. Lie Theory 21(2), 263–283 (2011)

    MathSciNet  MATH  Google Scholar 

  72. Kleiman, S.L.: Toward a numerical theory of ampleness. Ann. Math. (2) 84, 293–344 (1966)

    Google Scholar 

  73. Koszul, J.L.: Homologie et Cohomologie des Algébre de Lie. Bull. Soc. Math. de France 78, 65–127 (1950)

    MathSciNet  MATH  Google Scholar 

  74. Krattenthaler, C.: Advanced determinant calculus. Sém. Lothar. Combin. 42, Art. B42q, 67 pp. (electronic) (1999). The Andrews Festschrift (Maratea, 1998)

    Google Scholar 

  75. Krattenthaler, C.: Another involution principle-free bijective proof of Stanley’s hook-content formula. J. Comb. Theory Ser. A 88(1), 66–92 (1999). doi:10.1006/jcta.1999.2979. http://dx.doi.org/10.1006/jcta.1999.2979

    Google Scholar 

  76. Krull, W.: Idealtheorie. Zweite, ergänzte Auflage. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 46. Springer, Berlin (1968)

    Google Scholar 

  77. Kuhnigk, K.: On Macaulay duals of Hilbert ideals. J. Pure Appl. Algebra 210(2), 473–480 (2007). doi:10.1016/j.jpaa.2006.10.014. http://dx.doi.org/10.1016/j.jpaa.2006.10.014

    Google Scholar 

  78. Lazarsfeld, R.: Positivity in algebraic geometry, I. Classical setting: line bundles and linear series. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48. Springer, Berlin (2004).

    Google Scholar 

  79. Lefschetz, S.: L’analysis situs et la géométrie algébrique. Gauthier-Villars, Paris (1950)

    MATH  Google Scholar 

  80. Li, J., Zanello, F.: Monomial complete intersections, the weak Lefschetz property and plane partitions. Discrete Math. 310(24), 3558–3570 (2010). doi:10.1016/j.disc.2010.09.006. http://dx.doi.org/10.1016/j.disc.2010.09.006

  81. Lindsey, M.: A class of Hilbert series and the strong Lefschetz property. Proc. Am. Math. Soc. 139(1), 79–92 (2011). doi:10.1090/S0002-9939-2010-10498-7. http://dx.doi.org/10.1090/S0002-9939-2010-10498-7

  82. Lossen, C.: When does the Hessian determinant vanish identically? (On Gordan and Noether’s proof of Hesse’s claim). Bull. Braz. Math. Soc. (N.S.) 35(1), 71–82 (2004). doi:10.1007/s00574-004-0004-0. http://dx.doi.org/10.1007/s00574-004-0004-0

  83. Macaulay, F.S.: On the resolution of a given modular system into primary systems including some properties of Hilbert numbers. Math. Ann. 74(1), 66–121 (1913). doi:10.1007/BF01455345. http://dx.doi.org/10.1007/BF01455345

    Google Scholar 

  84. Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1994). Revised reprint of the 1916 original, With an introduction by Paul Roberts

    Google Scholar 

  85. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (1995). With contributions by A. Zelevinsky, Oxford Science Publications

    Google Scholar 

  86. MacMahon, P.A.: Combinatory Analysis. Two volumes (bound as one). Chelsea Publishing, New York (1960)

    Google Scholar 

  87. Maeno, T.: Lefschetz property, Schur-Weyl duality and a q-deformation of Specht polynomial. Commun. Algebra 35(4), 1307–1321 (2007). doi:10.1080/00927870601142371. http://dx.doi.org/10.1080/00927870601142371

    Google Scholar 

  88. Maeno, T., Numata, Y.: Sperner property and finite-dimensional gorenstein algebras associated to matroids (2011). Preprint, arXiv:1107.5094

    Google Scholar 

  89. Maeno, T., Watanabe, J.: Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials. Ill. J. Math. 53(2), 591–603 (2009). http://projecteuclid.org/getRecord?id=euclid.ijm/1266934795

    Google Scholar 

  90. Maeno, T., Numata, Y., Wachi, A.: Strong Lefschetz elements of the coinvariant rings of finite Coxeter groups. Algebras Represent. Theory 14(4), 625–638 (2011). doi:10.1007/s10468-010-9207-9. http://dx.doi.org/10.1007/s10468-010-9207-9

  91. Martsinkovsky, A., Vlassov, A.: The representation rings of k[x]. preprint (2004). http://www.math.neu.edu/~martsinkovsky/GreenExcerpt.pdf

  92. Matlis, E.: Injective modules over Noetherian rings. Pac. J. Math. 8, 511–528 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  93. Matsumura, H.: Commutative ring theory. In: Cambridge Studies in Advanced Mathematics, vol. 8, 2nd edn. Cambridge University Press, Cambridge (1989). Translated from the Japanese by M. Reid

    Google Scholar 

  94. McDaniel, C.: The strong lefschetz property for coinvariant rings of finite reflection groups. J. Algebra 331, 68–95 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  95. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17, 179–184 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  96. McMullen, P.: The numbers of faces of simplicial polytopes. Isr. J. Math. 9, 559–570 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  97. Meyer, D.M., Smith, L.: The Lasker-Noether theorem for unstable modules over the Steenrod algebra. Commun. Algebra 31(12), 5841–5845 (2003). doi:10.1081/AGB-120024856. http://dx.doi.org/10.1081/AGB-120024856

    Google Scholar 

  98. Meyer, D.M., Smith, L.: Realization and nonrealization of Poincaré duality quotients of \(\mathbb{F}_{2}[x,y]\) as topological spaces. Fund. Math. 177(3), 241–250 (2003). doi:10.4064/fm177-3-4. http://dx.doi.org/10.4064/fm177-3-4

  99. Meyer, D.M., Smith, L.: Poincaré duality algebras, Macaulay’s dual systems, and Steenrod operations. In: Cambridge Tracts in Mathematics, vol. 167. Cambridge University Press, Cambridge (2005). doi:10.1017/CBO9780511542855. http://dx.doi.org/10.1017/CBO9780511542855

  100. Mezzetti, E., Miró-Roig, R.M., Ottaviani, G.: Laplace equations and the weak lefschetz property. Can. J. Math. (2012, online first). doi:10.4153/CJM-2012-033-x. http://dx.doi.org/10.4153/CJM-2012-033-x

  101. Migliore, J., Nagel, U.: A tour of the weak and strong lefschetz properties (2011). Preprint, arXiv:1109.5718v2 [math.AC]

    Google Scholar 

  102. Migliore, J.C., Miró-Roig, R.M., Nagel, U.: Monomial ideals, almost complete intersections and the weak Lefschetz property. Trans. Am. Math. Soc. 363(1), 229–257 (2011). doi:10.1090/S0002-9947-2010-05127-X. http://dx.doi.org/10.1090/S0002-9947-2010-05127-X

    Google Scholar 

  103. Morita, H., Wachi, A., Watanabe, J.: Zero-dimensional Gorenstein algebras with the action of the symmetric group. Rend. Semin. Mat. Univ. Padova 121, 45–71 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  104. Motzkin, T.S.: Comonotone curves and polyhedra. In: Bull. Am. Math. Soc. [154], p. 35. doi:10.1090/S0002-9904-1957-10068-8. http://dx.doi.org/10.1090/S0002-9904-1957-10068-8

  105. Mumford, D.: Stability of projective varieties. L’Enseignement Mathématique, Geneva (1977). Lectures given at the “Institut des Hautes Études Scientifiques”, Bures-sur-Yvette, March-April 1976, Monographie de l’Enseignement Mathématique, No. 24

    Google Scholar 

  106. Murthy, M.P.: A note on factorial rings. Arch. Math. (Basel) 15, 418–420 (1964)

    Google Scholar 

  107. Nagata, M.: Local rings. In: Interscience Tracts in Pure and Applied Mathematics, vol. 13. Interscience Publishers a division of Wiley, New York (1962)

    Google Scholar 

  108. Numata, Y., Wachi, A.: The strong Lefschetz property of the coinvariant ring of the Coxeter group of type H 4. J. Algebra 318(2), 1032–1038 (2007). doi:10.1016/j.jalgebra.2007.06.016. http://dx.doi.org/10.1016/j.jalgebra.2007.06.016

  109. Oda, T.: Torus embeddings and applications. In: Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 57. Tata Institute of Fundamental Research, Bombay (1978). Based on joint work with Katsuya Miyake

    Google Scholar 

  110. Oda, T.: Convex bodies and algebraic geometry. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15. Springer, Berlin (1988). An introduction to the theory of toric varieties, Translated from the Japanese

    Google Scholar 

  111. Okon, J.S., Vicknair, J.P.: A Gorenstein ring with larger Dilworth number than Sperner number. Can. Math. Bull. 43(1), 100–104 (2000). doi:10.4153/CMB-2000-015-2. http://dx.doi.org/10.4153/CMB-2000-015-2

  112. Okon, J.S., Rush, D.E., Vicknair, J.P.: Numbers of generators of ideals in a group ring of an elementary abelian p-group. J. Algebra 224(1), 1–22 (2000). doi:10.1006/jabr.1999.8082. http://dx.doi.org/10.1006/jabr.1999.8082

    Google Scholar 

  113. Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. In: Progress in Mathematics, vol. 3. Birkhäuser Boston, Boston (1980)

    Google Scholar 

  114. Pandharipande, R.: A compactification over \(\overline{M}_{g}\) of the universal moduli space of slope-semistable vector bundles. J. Am. Math. Soc. 9(2), 425–471 (1996). doi:10.1090/S0894-0347-96-00173-7. http://dx.doi.org/10.1090/S0894-0347-96-00173-7

  115. Perles, M.A.: A proof of Dilworth’s decomposition theorem for partially ordered sets. Isr. J. Math. 1, 105–107 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  116. Popov, V.L.: On the stability of the action of an algebraic group on an algebraic variety. Math. USSR Izvestiya 6(2), 367 (1972). doi:doi:10.1070/IM1972v006n02ABEH001877. http://dx.doi.org/10.1070/IM1972v006n02ABEH001877

  117. Proctor, R.A.: Solution of two difficult combinatorial problems with linear algebra. Am. Math. Mon. 89(10), 721–734 (1982). doi:10.2307/2975833. http://dx.doi.org/10.2307/2975833

    Google Scholar 

  118. Pukhlikov, A.V., Khovanskiĭ, A.G.: The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes. Algebra i Analiz 4(4), 188–216 (1992)

    Google Scholar 

  119. Reid, L., Roberts, L.G., Roitman, M.: On complete intersections and their Hilbert functions. Can. Math. Bull. 34(4), 525–535 (1991). doi:10.4153/CMB-1991-083-9. http://dx.doi.org/10.4153/CMB-1991-083-9

  120. Roberts, P.C.: A computation of local cohomology. In: Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra, South Hadley, MA, 1992. Contemporary Mathematics, vol. 159, pp. 351–356. American Mathematical Society, Providence (1994)

    Google Scholar 

  121. Sagan, B.E.: The symmetric group: Representations, combinatorial algorithms, and symmetric functions. In: Graduate Texts in Mathematics, vol. 203, 2nd edn. Springer, New York (2001).

    Google Scholar 

  122. Sally, J.D.: Numbers of generators of ideals in local rings. Marcel Dekker, New York (1978)

    MATH  Google Scholar 

  123. Sekiguchi, H.: The upper bound of the Dilworth number and the Rees number of Noetherian local rings with a Hilbert function. Adv. Math. 124(2), 197–206 (1996). doi:10.1006/aima.1996.0082. http://dx.doi.org/10.1006/aima.1996.0082

  124. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  125. Shioda, T.: On the graded ring of invariants of binary octavics. Am. J. Math. 89, 1022–1046 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  126. Smith, L.: Note on the realization of complete intersections algebras as the cohomology of a space. Quart. J. Math. Oxford Ser 33, 379–384 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  127. Smith, L.: Polynomial invariants of finite groups. In: Research Notes in Mathematics, vol. 6. A K Peters Ltd., Wellesley (1995)

    Google Scholar 

  128. Solomon, L.: Invariants of finite reflection groups. Nagoya Math. J. 22, 57–64 (1963)

    MathSciNet  MATH  Google Scholar 

  129. Solomon, L.: Partition identities and invariants of finite reflection groups. Nagoya Math. J. 22, 57–64 (1963)

    MathSciNet  MATH  Google Scholar 

  130. Solomon, L.: Invariants of euclidian reflection groups. Trans. Am. Math. Soc. 113, 274–286 (1964)

    Article  MATH  Google Scholar 

  131. Specht, W.: Die irreduziblen Darstellungen der symmetrischen Gruppe. Math. Z. 39(1), 696–711 (1935). doi:10.1007/BF01201387. http://dx.doi.org/10.1007/BF01201387

  132. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27(1), 544–548 (1928). doi:10.1007/BF01171114. http://dx.doi.org/10.1007/BF01171114

  133. Stanley, R.P.: Cohen-Macaulay complexes. In: Higher Combinatorics, Proc. NATO Advanced Study Inst., Berlin, 1976, pp. 51–62. NATO Adv. Study Inst. Ser., Ser. C: Math. and Phys. Sci., 31. Reidel, Dordrecht (1977)

    Google Scholar 

  134. Stanley, R.P.: Hilbert functions of graded algebras. Adv. Math. 28(1), 57–83 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  135. Stanley, R.P.: The number of faces of a simplicial convex polytope. Adv. Math. 35(3), 236–238 (1980). doi:10.1016/0001-8708(80)90050-X. http://dx.doi.org/10.1016/0001-8708(80)90050-X

    Google Scholar 

  136. Stanley, R.P.: Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Algebr. Discrete Methods 1(2), 168–184 (1980). doi:10.1137/0601021. http://dx.doi.org/10.1137/0601021

  137. Stanley, R.P.: Combinatorics and commutative algebra. In: Progress in Mathematics, vol. 41, 2nd edn. Birkhäuser Boston, Boston (1996)

    Google Scholar 

  138. Stanley, R.P.: Enumerative combinatorics, vol. 1. In: Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997). With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original

    Google Scholar 

  139. Steinberg, R.: Differential equations invariant under finite reflection groups. Trans. Am. Math. Soc. 112, 392–400 (1964)

    Article  MATH  Google Scholar 

  140. Stong, R.E.: Poincaré algebras modulo an odd prime. Comment. Math. Helv. 49, 382–407 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  141. Stong, R.E.: Cup products in Grassmannians. Topol. Appl. 13(1), 103–113 (1982). doi:10.1016/0166-8641(82)90012-8. http://dx.doi.org/10.1016/0166-8641(82)90012-8

  142. Terasoma, T., Yamada, H.: Higher Specht polynomials for the symmetric group. Proc. Jpn. Acad. Ser. A Math. Sci. 69(2), 41–44 (1993). http://projecteuclid.org/getRecord?id=euclid.pja/1195511538

  143. Trung, N.V.: Bounds for the minimum numbers of generators of generalized Cohen-Macaulay ideals. J. Algebra 90(1), 1–9 (1984). doi:10.1016/0021-8693(84)90193-5. http://dx.doi.org/10.1016/0021-8693(84)90193-5

  144. Watanabe, J.: A note on Gorenstein rings of embedding codimension three. Nagoya Math. J. 50, 227–232 (1973)

    MathSciNet  MATH  Google Scholar 

  145. Watanabe, J.: Some remarks on Cohen-Macaulay rings with many zero divisors and an application. J. Algebra 39(1), 1–14 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  146. Watanabe, J.: The Dilworth number of Artinian rings and finite posets with rank function. In: Commutative Algebra and Combinatorics, Kyoto, 1985. Advanced Studies in Pure Mathematics, vol. 11, pp. 303–312. North-Holland, Amsterdam (1987)

    Google Scholar 

  147. Watanabe, J.: \(\mathfrak{m}\)-full ideals. Nagoya Math. J. 106, 101–111 (1987). http://projecteuclid.org/getRecord?id=euclid.nmj/1118780704

  148. Watanabe, J.: A note on complete intersections of height three. Proc. Am. Math. Soc. 126(11), 3161–3168 (1998). doi:10.1090/S0002-9939-98-04477-3. http://dx.doi.org/10.1090/S0002-9939-98-04477-3

  149. Watanabe, J.: A remark on the hessian of homogeneous polynomials. In: Bogoyavlenskij, O., Coleman, A.J., Geramita, A.V., Ribenboim, P. (eds.) The Curves Seminar at Queen’s, vol. XIII. Queen’s Papers in Pure and Applied Mathematics, vol. 119, pp. 171–178. Queen’s University, Kingston (2000)

    Google Scholar 

  150. Watanabe, J.: On the minimal number of the quotient of a complete intersection by a regular sequence. Proc. Sch. Sci. Tokai Univ. 47, 1–10 (2012)

    MathSciNet  MATH  Google Scholar 

  151. Watanabe, J.: On the theory of Gordan-Noether on the homogeneous forms with zero Hessian. Proc. Sch. Tokai Univ. 48 (2013) (to appear)

    Google Scholar 

  152. Weyl, H.: The classical groups. In: Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997). Their invariants and representations, Fifteenth printing, Princeton Paperbacks

    Google Scholar 

  153. Wiebe, A.: The Lefschetz property for componentwise linear ideals and Gotzmann ideals. Commun. Algebra 32(12), 4601–4611 (2004). doi:10.1081/AGB-200036809. http://dx.doi.org/10.1081/AGB-200036809

    Google Scholar 

  154. Youngs, J.W.T.: The November meeting in Evanston. Bull. Am. Math. Soc. 63(1), 29–38 (1957). doi:10.1090/S0002-9904-1957-10068-8. http://dx.doi.org/10.1090/S0002-9904-1957-10068-8

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harima, T., Maeno, T., Morita, H., Numata, Y., Wachi, A., Watanabe, J. (2013). Basics on the Theory of Local Rings. In: The Lefschetz Properties. Lecture Notes in Mathematics, vol 2080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38206-2_2

Download citation

Publish with us

Policies and ethics