Skip to main content

Algorithms for Junctions in Acyclic Digraphs

  • Chapter
Facets of Combinatorial Optimization

Abstract

Given targets u and v in a digraph D, we say that a vertex s is a junction of u and v if there are in D internally vertex-disjoint directed paths from s to u and from s to v. In this paper, we show how to characterize junctions in acyclic digraphs. We also consider the following problem and derive an efficient algorithm to solve it. Given an acyclic digraph D, a vertex s in D and k pairs of targets {u 1,v 1},…,{u k ,v k }, determine the pairs of targets {u i ,v i } for which s is a junction. This problem arises in an application brought to our attention by an anthropologist. In this application the digraph represents the genealogy of an ethnic group in Brazilian Amazon region, and the pairs of targets are individuals that are married. We apply our algorithm to find all the junctions of k pairs of targets on those kinship networks. Experiments have shown that our algorithm had a good performance for the inputs considered. Some results are described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling. Vol. I: Parsing. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1972)

    Google Scholar 

  2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: On finding lowest common ancestors in trees. SIAM J. Comput. 5(1), 115–132 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time. SIAM J. Comput. 28(6), 2117–2132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baumgart, M., Eckhardt, S., Griebsch, J., Kosub, S., Nowak, J.: All-pairs ancestor problems in weighted dags. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE. Lecture Notes in Computer Science, vol. 4614, pp. 282–293. Springer, Berlin (2007)

    Google Scholar 

  5. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common ancestors in trees and directed acyclic graphs. J. Algorithms 57(2), 75–94 (2005). doi:10.1016/j.jalgor.2005.08.001

    Article  MathSciNet  MATH  Google Scholar 

  6. Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. Syst. Sci. 48(2), 214–230 (1994). doi:10.1016/S0022-0000(05)80002-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The open graph drawing framework (OGDF). In: Handbook of Graph Drawing and Visualization. CRC Press, Boca Raton (2013)

    Google Scholar 

  8. Cole, R., Hariharan, R.: Dynamic LCA queries on trees. SIAM J. Comput. 34(4), 894–923 (2005). doi:10.1137/S0097539700370539

    Article  MathSciNet  MATH  Google Scholar 

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  10. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common ancestors in directed acyclic graphs. Theor. Comput. Sci. 380(1–2), 37–46 (2007). doi:10.1016/j.tcs.2007.02.053

    Article  MathSciNet  MATH  Google Scholar 

  11. dal Poz, J., da Silva, F.M.: Maqpar: a homemade tool for the study of kinship networks. Vibrant 6(2), 29–51 (2009)

    Google Scholar 

  12. Eckhardt, S., Mühling, A.M., Nowak, J.: Fast lowest common ancestor computations in dags. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA. Lecture Notes in Computer Science, vol. 4698, pp. 705–716. Springer, Berlin (2007)

    Google Scholar 

  13. Ferreira, C.E., Franco, Á.J.P.: Finding rings in genealogies: computational complexity and algorithms. In preparation

    Google Scholar 

  14. Georgiadis, L., Tarjan, R.E.: Finding dominators revisited: extended abstract. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’04, pp. 869–878. SIAM, Philadelphia (2004)

    Google Scholar 

  15. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC’86, pp. 136–146. ACM, New York (1986). doi:10.1145/12130.12144

    Chapter  Google Scholar 

  16. Grötschel, M.: On minimal strong blocks. J. Graph Theory 3, 213–219 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984). doi:10.1137/0213024

    Article  MathSciNet  MATH  Google Scholar 

  18. Nykänen, M., Ukkonen, E.: Finding lowest common ancestors in arbitrarily directed trees. Inf. Process. Lett. 50(6), 307–310 (1994). doi:10.1016/0020-0190(94)00050-6

    Article  MATH  Google Scholar 

  19. Sedgewick, R.: Algorithms in C—Part 5: Graph Algorithms, 3rd edn. Addison-Wesley, Reading (2002)

    Google Scholar 

  20. Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint paths. Networks 14(2), 325–336 (1984). doi:10.1002/net.3230140209

    Article  MathSciNet  MATH  Google Scholar 

  21. Tholey, T.: Finding disjoint paths on directed acyclic graphs. In: Kratsch, D. (ed.) WG. Lecture Notes in Computer Science, vol. 3787, pp. 319–330. Springer, Berlin (2005)

    Google Scholar 

  22. Wen, Z.: New algorithms for the LCA problem and the binary tree reconstruction problem. Inf. Process. Lett. 51(1), 11–16 (1994). doi:10.1016/0020-0190(94)00058-1

    Article  MATH  Google Scholar 

  23. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of the 44th Symposium on Theory of Computing, STOC’12, pp. 887–898. ACM, New York (2012). doi:10.1145/2213977.2214056

    Chapter  Google Scholar 

  24. Yuster, R.: All-pairs disjoint paths from a common ancestor in \(\tilde {O} (n^{\omega})\) time. Theor. Comput. Sci. 396(1–3), 145–150 (2008). doi:10.1016/j.tcs.2008.01.032

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

C.E. Ferreira is supported by CNPq (Proc. 302736/10-7 and 477203/12-4). A.J.P. Franco is supported by CAPES (Proc. 33002010176P0). We want to thank Professor Marcio Ferreira da Silva (Anthropology Department, University of São Paulo) who brought this problem (and other related to kinship networks) to our attention and provided us the data used in these experiments. We also thank the anonymous referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Eduardo Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferreira, C.E., Franco, Á.J.P. (2013). Algorithms for Junctions in Acyclic Digraphs. In: Jünger, M., Reinelt, G. (eds) Facets of Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38189-8_8

Download citation

Publish with us

Policies and ethics