Skip to main content

Mirror-Descent Methods in Mixed-Integer Convex Optimization

  • Chapter
Facets of Combinatorial Optimization

Abstract

In this paper, we address the problem of minimizing a convex function f over a convex set, with the extra constraint that some variables must be integer. This problem, even when f is a piecewise linear function, is NP-hard. We study an algorithmic approach to this problem, postponing its hardness to the realization of an oracle. If this oracle can be realized in polynomial time, then the problem can be solved in polynomial time as well. For problems with two integer variables, we show with a novel geometric construction how to implement the oracle efficiently, that is, in \(\mathcal {O}(\ln(B))\) approximate minimizations of f over the continuous variables, where B is a known bound on the absolute value of the integer variables. Our algorithm can be adapted to find the second best point of a purely integer convex optimization problem in two dimensions, and more generally its k-th best point. This observation allows us to formulate a finite-time algorithm for mixed-integer convex optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arora, S., Kale, S.: A combinatorial, primal-dual approach to semidefinite programs [extended abstract]. In: STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, pp. 227–236. ACM, New York (2007). doi:10.1145/1250790.1250823

    Google Scholar 

  2. Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5(2), 186–204 (2008). doi:10.1016/j.disopt.2006.10.011

    Article  MathSciNet  MATH  Google Scholar 

  3. Conn, A., Gould, N., Toint, P.: Trust-Region Methods. MPS/SIAM Series on Optimization. SIAM, Philadelphia (2000). doi:10.1137/1.9780898719857

    Book  MATH  Google Scholar 

  4. Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986). doi:10.1007/BF02592064

    Article  MathSciNet  MATH  Google Scholar 

  5. Eisenbrand, F., Laue, S.: A linear algorithm for integer programming in the plane. Math. Program., Ser. A 102(2), 249–259 (2005). doi:10.1007/s10107-004-0520-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program., Ser. A 66(3), 327–349 (1994). doi:10.1007/BF01581153

    Article  MathSciNet  MATH  Google Scholar 

  7. Graham, R.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1, 132–133 (1972)

    Article  MATH  Google Scholar 

  8. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics: Study and Research Texts, vol. 2. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  9. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods. Grundlehren der Mathematischen Wissenschaften, vol. 306. Springer, Berlin (1993)

    MATH  Google Scholar 

  10. Khachiyan, L.: A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244, 1093–1096 (1979)

    MathSciNet  MATH  Google Scholar 

  11. Lenstra, H. Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983). doi:10.1287/moor.8.4.538

    Article  MathSciNet  MATH  Google Scholar 

  12. Nemirovski, A.: Efficient methods in convex programming. Lecture notes (1994). www2.isye.gatech.edu/~nemirovs/Lect_EMCO.pdf

  13. Nemirovski, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley, New York (1983)

    Google Scholar 

  14. Nesterov, Y.: Introductory Lectures on Convex Optimization. Applied Optimization, vol. 87. Kluwer Academic, Boston (2004)

    MATH  Google Scholar 

  15. Nesterov, Y., Nemirovski, A.: Interior-Point Polynomial Algorithms in Convex Programming. Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia (1994). doi:10.1137/1.9781611970791

    Book  MATH  Google Scholar 

  16. Rockafellar, R.: The Theory of Subgradients and Its Applications to Problems of Optimization: Convex and Non Convex Functions. R & E, vol. 1. Heldermann, Berlin (1981)

    Google Scholar 

  17. Viswanathan, J., Grossmann, I.: A combined penalty function and outer-approximation method for MINLP optimization. Comput. Chem. Eng. 14(7), 769–782 (1990). doi:10.1016/0098-1354(90)87085-4

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for helpful comments. This work was partially supported by the German Science Foundation, SFB/Transregio 63 InPROMPT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Weismantel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baes, M., Oertel, T., Wagner, C., Weismantel, R. (2013). Mirror-Descent Methods in Mixed-Integer Convex Optimization. In: Jünger, M., Reinelt, G. (eds) Facets of Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38189-8_5

Download citation

Publish with us

Policies and ethics