Advertisement

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization

  • Martin Schmidt
  • Marc C. Steinbach
  • Bernhard M. Willert

Abstract

Complex real-world optimization tasks often lead to mixed-integer nonlinear problems (MINLPs). However, current MINLP algorithms are not always able to solve the resulting large-scale problems. One remedy is to develop problem specific primal heuristics that quickly deliver feasible solutions. This paper presents such a primal heuristic for a certain class of MINLP models. Our approach features a clear distinction between nonsmooth but continuous and genuinely discrete aspects of the model. The former are handled by suitable smoothing techniques; for the latter we employ reformulations using complementarity constraints. The resulting mathematical programs with equilibrium constraints (MPEC) are finally regularized to obtain MINLP-feasible solutions with general purpose NLP solvers.

Keywords

Control Valve Complementarity Constraint Penalization Scheme Mathematical Program With Equilibrium Constraint Discrete Decision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been funded by the Federal Ministry of Economics and Technology owing to a decision of the German Bundestag. We would next like to thank our industry partner Open Grid Europe GmbH and the project partners in the ForNe consortium. The authors are also indebted to an anonymous referee whose comments and suggestions greatly improved the quality of the paper. Finally, the second author would like to express his gratitude for the challenging and stimulating scientific environment and the personal support that Martin Grötschel provided to him as a PostDoc in his research group at ZIB, and for the continued fruitful cooperation that he is now experiencing as a ZIB Fellow with his own research group at Leibniz Universität Hannover. We dedicate this paper to Martin Grötschel on the occasion of his 65th birthday.

References

  1. 1.
    Baumrucker, B.T., Renfro, J.G., Biegler, L.T.: MPEC problem formulations and solution strategies with chemical engineering applications. Comput. Chem. Eng. 32(12), 2903–2913 (2008) CrossRefGoogle Scholar
  2. 2.
    Borraz-Sánchez, C., Ríos-Mercado, R.Z.: A hybrid meta-heuristic approach for natural gas pipeline network optimization. In: Blesa, M., Blum, C., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics. Lecture Notes in Computer Science, vol. 3636, pp. 54–65. Springer, Berlin (2005). doi: 10.1007/11546245_6 CrossRefGoogle Scholar
  3. 3.
    Boyd, E.A., Scott, L.R., Wu, S.: Evaluating the quality of pipeline optimization algorithms. In: Pipeline Simulation Interest Group 29th Annual Meeting, Tucson, AZ, paper 9709 (1997) Google Scholar
  4. 4.
    Burgschweiger, J., Gnädig, B., Steinbach, M.C.: Optimization models for operative planning in drinking water networks. Optim. Eng. 10(1), 43–73 (2009). doi: 10.1007/s11081-008-9040-8 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Burgschweiger, J., Gnädig, B., Steinbach, M.C.: Nonlinear programming techniques for operative planning in large drinking water networks. Open Appl. Math. J. 3, 14–28 (2009). doi:  10.2174/1874114200903010014 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Carter, R.G.: Compressor station optimization: computational accuracy and speed. In: Pipeline Simulation Interest Group 28th Annual Meeting, paper 9605 (1996) Google Scholar
  7. 7.
    Cobos-Zaleta, D., Ríos-Mercado, R.Z.: A MINLP model for a problem of minimizing fuel consumption on natural gas pipeline networks. In: Proc. XI Latin-Ibero-American Conference on Operations Research, paper A48-01, pp. 1–9 (2002) Google Scholar
  8. 8.
    Dantzig, G.B.: On the significance of solving linear programming problems with some integer variables. Econometrica 28(1), 30–44 (1960). www.jstor.org/stable/1905292 MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    de Wolf, D., Smeers, Y.: The gas transmission problem solved by an extension of the simplex algorithm. Manag. Sci. 46(11), 1454–1465 (2000) MATHCrossRefGoogle Scholar
  10. 10.
    DeMiguel, A.V., Friedlander, M.P., Nogales, F.J., Scholtes, S.: A two-sided relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 16(1), 587–609 (2005). doi: 10.1109/TIT.2005.860448 MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Domschke, P., Geißler, B., Kolb, O., Lang, J., Martin, A., Morsi, A.: Combination of nonlinear and linear optimization of transient gas networks. INFORMS J. Comput. 23(4), 605–617 (2011). doi: 10.1287/ijoc.1100.0429 MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ehrhardt, K., Steinbach, M.C.: KKT systems in operative planning for gas distribution networks. Proc. Appl. Math. Mech. 4(1), 606–607 (2004) CrossRefGoogle Scholar
  13. 13.
    Ehrhardt, K., Steinbach, M.C.: Nonlinear optimization in gas networks. In: Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 139–148. Springer, Berlin (2005) CrossRefGoogle Scholar
  14. 14.
    Fischer, A.: A special Newton-type optimization method. Optimization 24(3–4), 269–284 (1992). doi: 10.1080/02331939208843795 MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Fügenschuh, A., Geißler, B., Gollmer, R., Hayn, C., Henrion, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Mirkov, R., Morsi, A., Römisch, W., Rövekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Willert, B.M.: Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets. Technical report ZR 13-13, ZIB (2013) Google Scholar
  16. 16.
    GAMS—A Users Guide. Redwood City (1988) Google Scholar
  17. 17.
    Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3(3), 227–252 (2002). doi: 10.1023/A:1021039126272 MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Preprint 299, Institute of Mathematics, University of Würzburg (2010) Google Scholar
  19. 19.
    Hu, X.M., Ralph, D.: Convergence of a penalty method for mathematical programming with complementarity constraints. J. Optim. Theory Appl. 123, 365–390 (2004) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Koch, T., Bargmann, D., Ebbers, M., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R., Gotzes, U., Hayn, C., Heitsch, H., Henrion, R., Hiller, B., Humpola, J., Joormann, I., Kühl, V., Lehmann, T., Leövey, H., Martin, A., Mirkov, R., Möller, A., Morsi, A., Oucherif, D., Pelzer, A., Pfetsch, M.E., Schewe, L., Römisch, W., Rövekamp, J., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Spreckelsen, K., Stangl, C., Steinbach, M.C., Steinkamp, A., Wegner-Specht, I., Willert, B.M., Vigerske, S. (eds.): From Simulation to Optimization: Evaluating Gas Network Capacities. In preparation Google Scholar
  21. 21.
    Kraemer, K., Marquardt, W.: Continuous reformulation of MINLP problems. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and Its Applications in Engineering, pp. 83–92. Springer, Berlin (2010). doi: 10.1007/978-3-642-12598-0_8 CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Leyffer, S., López-Calva, G., Nocedal, J.: Interior methods for mathematical programs with complementarity constraints. SIAM J. Optim. 17, 52–77 (2004) CrossRefGoogle Scholar
  24. 24.
    Markowitz, H.M., Manne, A.S.: On the solution of discrete programming problems. Econometrica 25(1), 84–110 (1957). www.jstor.org/stable/1907744 MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Martin, A., Möller, M.: Cutting planes for the optimization of gas networks. In: Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 307–329. Springer, Berlin (2005) CrossRefGoogle Scholar
  26. 26.
    Martin, A., Möller, M., Moritz, S.: Mixed integer models for the stationary case of gas network optimization. Math. Program., Ser. B 105(2–3), 563–582 (2006). doi: 10.1007/s10107-005-0665-5 MATHCrossRefGoogle Scholar
  27. 27.
    Martin, A., Mahlke, D., Moritz, S.: A simulated annealing algorithm for transient optimization in gas networks. Math. Methods Oper. Res. 66(1), 99–115 (2007). doi: 10.1007/s00186-006-0142-9 MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Meyer, R.R.: Mixed integer minimization models for piecewise-linear functions of a single variable. Discrete Math. 16(2), 163–171 (1976). doi: 10.1016/0012-365X(76)90145-X MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Osiadacz, A.: Nonlinear programming applied to the optimum control of a gas compressor station. Int. J. Numer. Methods Eng. 15(9), 1287–1301 (1980). doi: 10.1002/nme.1620150902 MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Pfetsch, M.E., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rövekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert, B.M.: Validation of nominations in gas network optimization: models, methods, and solutions. Technical report ZR 12-41, ZIB (2012) Google Scholar
  31. 31.
    Pratt, K.F., Wilson, J.G.: Optimization of the operation of gas transmission systems. Trans. Inst. Meas. Control 6(5), 261–269 (1984). doi: 10.1177/014233128400600411 CrossRefGoogle Scholar
  32. 32.
    Raman, R., Grossmann, I.E.: Modeling and computational techniques for logic based integer programming. Comput. Chem. Eng. 18(7), 563–578 (1994) CrossRefGoogle Scholar
  33. 33.
    Ríos-Mercado, R.Z., Wu, S., Scott, L.R., Boyd, A.E.: A reduction technique for natural gas transmission network optimization problems. Ann. Oper. Res. 117, 217–234 (2002) MATHCrossRefGoogle Scholar
  34. 34.
    Ríos-Mercado, R.Z., Kim, S., Boyd, A.E.: Efficient operation of natural gas transmission systems: a network-based heuristic for cyclic structures. Comput. Oper. Res. 33(8), 2323–2351 (2006). doi: 10.1016/j.cor.2005.02.003 MATHCrossRefGoogle Scholar
  35. 35.
    Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality and sensitivity. Math. Oper. Res. 25, 1–22 (2000) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks—part 1: model components. IfAM preprint 94, Inst. of Applied Mathematics, Leibniz Universität Hannover (2012, submitted) Google Scholar
  37. 37.
    Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks—part 2: validation and results (2013, in preparation) Google Scholar
  38. 38.
    Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Stein, O., Oldenburg, J., Marquardt, W.: Continuous reformulations of discrete-continuous optimization problems. Comput. Chem. Eng. 28(10), 1951–1966 (2004) CrossRefGoogle Scholar
  40. 40.
    Steinbach, M.C.: On PDE solution in transient optimization of gas networks. J. Comput. Appl. Math. 203(2), 345–361 (2007). doi: 10.1016/j.cam.2006.04.018 MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Sun, D., Qi, L.: On NCP-functions. Computational optimization—a tribute to Olvi Mangasarian, part II. Comput. Optim. Appl. 13(1–3), 201–220 (1999). doi: 10.1023/A:1008669226453 MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 5035, pp. 199–213. Springer, Berlin (2008). doi: 10.1007/978-3-540-68891-4_14 CrossRefGoogle Scholar
  43. 43.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). doi: 10.1007/s10107-004-0559-y MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Wright, S., Somani, M., Ditzel, C.: Compressor station optimization. In: Pipeline Simulation Interest Group 30th Annual Meeting, paper 9805 (1998) Google Scholar
  45. 45.
    Wu, S., Ríos-Mercado, R.Z., Boyd, A.E., Scott, L.R.: Model relaxations for the fuel cost minimization of steady-state gas pipeline networks. Technical report TR-99-01, University of Chicago (1999) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Schmidt
    • 1
  • Marc C. Steinbach
    • 1
  • Bernhard M. Willert
    • 1
  1. 1.Institut für Angewandte MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations