Skip to main content

X-Ray Diffraction Residual Stress Analysis in Polycrystals

  • Chapter
  • First Online:
Theoretical Concepts of X-Ray Nanoscale Analysis

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 183))

Abstract

In the previous chapters, the X-ray analysis has been applied to the samples with the electron density distributed uniformly in a macroscopic volume: the constant value for XRR analysis and three-dimensional periodic function in case of HRXRD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The parenthesis near underlined indices mean the symmetrization operation, \(a_{(\underline{i}\underline{j})kl}\equiv \frac{1}{2}(a_{ijkl}+a_{jikl})\). In these notations, the symmetry of stiffness tensor relatively the transposition of indices has a form \(c_{ijkl}=c_{(\underline{i}\underline{j})kl}=c_{ij(\underline{k}\underline{l})}=c_{(\underline{ij}\underline{kl})}\), where the latter equality means the symmetry with respect to the transposition of index pair.

  2. 2.

    To clarify whether the tensor is positive definite, the special representation (7.121) is used (see Sect. 7.4). In this representation, the positive definition corresponds to \(\varvec{C}\,{=}\,(3\kappa _c,2\min (\mu _c,\mu _c'),2\min (\mu _c,\mu _c'))\), and negative definition to \(\varvec{C}\,{=}\,(3\kappa _c,2\max (\mu _c,\mu _c'),2\max (\mu _c,\mu _c'))\), respectively.

  3. 3.

    The statements for Eshelby-Kröner model (7.69) are also valid for Hashin-Strickman model (7.63).

  4. 4.

    A similar situation occurs in Eshelby-Kröner model with the elliptical grains possessing a certain orientation [5].

References

  1. V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, New York, 2005)

    Google Scholar 

  2. E.J. Mittemeijer, P. Scardi (eds), Diffraction Analysis of the Microstructure of Materials (Springer, Berlin, 2004)

    Google Scholar 

  3. U.F. Kocks, C.N. Tom\(\acute{e}\), H.-R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effects on Material Properties (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  4. I.C. Noyan, J.B. Cohen, Residual Stress: Mesurements by Diffraction and Interpretation (Springer, Berlin, 1987)

    Google Scholar 

  5. U. Welzel, S. Freour, E.J. Mittemeijer, Direction-dependent elastic grain-interaction models a comparative study. Phil. Mag. 85(21), 2391–2414 (2005)

    Google Scholar 

  6. T. Ungár, Dislocation densities, arrangements and character from X-ray diffraction experiments. Mater. Sci. Eng. A 309, 14–22 (2001)

    Article  Google Scholar 

  7. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, vol. 7, 3rd edn (Butterworth-Heinemann, Oxford, 1986)

    Google Scholar 

  8. Mario Birkholz, Thin Film Analysis by X-Ray Scattering (Wiley, Weinheim, 2006)

    Google Scholar 

  9. E. Macherauch, P. Müller, Das \(\sin ^2 \psi \) - Verfahren der röntgenographischen Spannugsmessung. Zeitschrift angewandte Physik 13, 305–312 (1961)

    Google Scholar 

  10. V. Uglov, V. Anischik, S. Zlotski, I. Feranchuk, T. Alexeeva, A. Ulyanenkov, J. Brechbuehl, A. Lazar. Surf. Coat. Technol. 202, 2389 (2009)

    Google Scholar 

  11. A. Benediktovich, H.H. Guerault, I. Feranchuk, V. Uglov, A. Ulyanenkov, Influence of surface roughness on evaluation of stress gradients in coatings. Mater. Sci. Forum 681, 121–126 (2011)

    Google Scholar 

  12. V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation-Application-Assessment (Elsevier Science, Amsterdam, 1997)

    Google Scholar 

  13. B.B He, Two-dimensional X-ray Diffraction (Wiley, New Jersey, 2009)

    Google Scholar 

  14. Z. Hashin, Analysis of composite materials. J. Appl. Mech. 50(2), 481–505 (1983)

    Article  ADS  MATH  Google Scholar 

  15. G.W. Milton, The coherent potential approximation is a realizable effective medium scheme. Commun. Math. Phys. 99(4), 463–500 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  16. R.J. Gehr, R.W. Boyd, Optical properties of nanostructured optical materials. Chem. Mater. 8(8), 1807–1819 (1996)

    Article  Google Scholar 

  17. I.M. Lifshitz, L.N. Rosenzweig, To the theory of elastic properties of the polycrystals. Russ. J. Exp. Theoret. Phys. 16(11), 967–980 (1946)

    Google Scholar 

  18. J.R. Willis, Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21, 1–78 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Jr. W.F. Brown, Solid mixture permittivities. J. Chem. Phys. 23(8), 1514–1517 (1955)

    Google Scholar 

  20. D.A.G Bruggeman, The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances. Ann. Phys. 24(132), 636–679 (1935)

    Google Scholar 

  21. T. Mura, Micromechanics of Defects in Solids (Springer, New York, 1987)

    Google Scholar 

  22. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A. Math. Phys. Sci. 241(1226), 376–396 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. E. Kröner, Berechnung der elastischen Konstanten des Vielkristallsaus den Konstanten des Einkristalls. Zeitschrift für Physik A Hadrons and Nuclei 151(4), 504–518 (1958)

    Article  Google Scholar 

  24. U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E.J. Mittemeijer. Stress analysis of polycrystalline thin films and surface regions by x-ray diffraction. J. Appl. Crystallogr. 38(1), 1–29 (2005)

    Google Scholar 

  25. A. Andryieuski, S. Ha, A.A. Sukhorukov, Y.S. Kivshar, A.V. Lavrinenko, Bloch-mode analysis for retrieving effective parameters of metamaterials. Phys. Rev. B 86(3), 035127 (2012)

    Article  ADS  Google Scholar 

  26. T. Maas Harald Wern, N. Koch, Self-consistent calculation of the X-ray elastic constants of polycrystalline materials for arbitrary crystal symmetry. Mater. Sci. Forum. 404–407, 127–132 (2002)

    Google Scholar 

  27. R.A. Lebensohn, O. Castelnau, R. Brenner, P. Gilormini, Study of the antiplane deformation of linear 2-d polycrystals with different microstructures. Int. J. Solids Struct. 42(20), 5441–5459 (2005)

    Google Scholar 

  28. W. Voigt, Lehrbuch der Kristallphysik (Leipzig Teubner, 1910)

    Google Scholar 

  29. A. Reuss, Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fuer Einkristalle. ZAMM J. Appl. Math. Mech. / Zeitschrift fur Angewandte Mathematik und Mechanik 9(1), 49–58 (1929)

    Google Scholar 

  30. R Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A. 65(5), 349 (1952)

    Google Scholar 

  31. R.J. Asaro, D.M. Barnett, The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusion. J. Mech. Phys. Solids. 23(1), 77–83 (1975)

    Article  ADS  MATH  Google Scholar 

  32. Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids. 10(4), 343–352 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  33. G. Kneer, Uber die Berechnung der Elastitatsmoduln vielkristallner Aggregate mit Textur. physica status solidi (b). 9(3), 825–838 (1965)

    Google Scholar 

  34. N. Koch, U. Welzel, H. Wern, E.J. Mittemeijer, Mechanical elastic constants and diffraction stress factors of macroscopically elastically anisotropic polycrystals: the effect of grain-shape (morphological) texture. Phil. Mag. 84(33), 3547–3570 (2004)

    Article  ADS  Google Scholar 

  35. L.D. Landau, E.M. Lifshitz, J.B. Sykes, J.S. Bell, M.J. Kearsley, L.P. Pitaevskii, Electrodynamics of Continuous Media, vol. 364 (Pergamon Press, Oxford, 1960)

    Google Scholar 

  36. J.A. Osborn, Demagnetizing factors of the general ellipsoid. Phys. Rev. 67(11–12), 351–357 (1945)

    Article  ADS  Google Scholar 

  37. U. Welzel, M. Leoni, E.J. Mittemeijer, The determination of stresses in thin films; modelling elastic grain interaction. Phil. Mag. 83(5), 603–630 (2003)

    Article  ADS  Google Scholar 

  38. D. Faurie, O. Castelnau, R. Brenner, P.O. Renault, E. Le Bourhis, P. Goudeau, In situ diffraction strain analysis of elastically deformed polycrystalline thin films, and micromechanical interpretation. J. Appl. Crystallogr. 42(6), 1073–1084 (2009)

    Article  Google Scholar 

  39. R.W. Vook, F. Witt, Thermally induced strains in evaporated films. J. Appl. Phys. 36(7), 2169–2171 (1965)

    Google Scholar 

  40. M. Leoni, U. Welzel, P. Lamparter, EJ Mittemeijer, J.D. Kamminga, Diffraction analysis of internal strain-stress fields in textured, transversely isotropic thin films: theoretical basis and simulation. Phil. Mag. A. 81(3), 597–623 (2001)

    Google Scholar 

  41. F.I. Fedorov, The Lorentz Group (Nauka, Moscow, 1979)

    MATH  Google Scholar 

  42. E.J. Mittemeijer, Fundamentals of Materials Science: The Microstructure-Property Relationship Using Metals as Model Systems (Springer, Heidelberg, 2011)

    Google Scholar 

  43. T. Ungár, J. Gubicza, G. Ribárik, A. Borbély, Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34(3), 298–310 (2001)

    Google Scholar 

  44. G. Ribarik, T. Ungar, Characterization of the microstructure in random and textured polycrystals and single crystals by diffraction line profile analysis. Special topic section: local and near surface structure from diffraction. Mater. Sci. Eng. A, 528(1), 112–121 (2010)

    Google Scholar 

  45. H.J. Bunge, P.R. Morris, Texture Analysis in Materials Science: Mathematical Methods (Butterworths, London, 1982)

    Google Scholar 

  46. G.A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover Publications, Mineola, 2000)

    Google Scholar 

  47. I.M. Gelfand, R.A. Minlos, Z.Y. Shapiro, H.K. Farahat, Representations of the Rotation and Lorentz Groups and Their Applications, vol. 35 (Pergamon Press, New York, 1963)

    Google Scholar 

  48. A. Benediktovitch, F. Rinaldi, S. Menzel, K. Saito, T. Ulyanenkova, T. Baumbach, I.D. Feranchuk, A. Ulyanenkov, Lattice tilt, concentration, and relaxation degree of partly relaxed InGaAs/GaAs structures. Phys. Status Solidi (a). 208(11), 2539–2543 (2011)

    Google Scholar 

  49. Y.I. Sirotin, M.P. Shaskolskaya, The Basics of Crystallophysics (Nauka, Moscow, 1975)

    Google Scholar 

  50. L.J. Walpole, On the overall elastic moduli of composite materials. J. Mech. Phys. Solids. 17(4), 235–251 (1969)

    Article  ADS  MATH  Google Scholar 

  51. S. Matthies, K. Helming, T. Steinkopff, K. Kunze, Standard distributions for the case of fibre textures. Phys. Status Solidi (b). 150(1), K1–K5 (1988)

    Google Scholar 

  52. T. Eschner et al., Texture analysis by means of model functions. Textures Microstruct. 21, 139–139 (1993)

    Article  Google Scholar 

  53. A. Benediktovich, I. Feranchuk, A. Ulyanenkov, Calculation of X-ray stress factors using vector parameterization and irreducible representations for SO(3) group. Mater. Sci. Forum. 681, 387–392 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Benediktovitch .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benediktovitch, A., Feranchuk, I., Ulyanenkov, A. (2014). X-Ray Diffraction Residual Stress Analysis in Polycrystals. In: Theoretical Concepts of X-Ray Nanoscale Analysis. Springer Series in Materials Science, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38177-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38177-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38176-8

  • Online ISBN: 978-3-642-38177-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics