Advertisement

X-Ray Diffraction Residual Stress Analysis in Polycrystals

  • Andrei BenediktovitchEmail author
  • Ilya Feranchuk
  • Alexander Ulyanenkov
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 183)

Abstract

In the previous chapters, the X-ray analysis has been applied to the samples with the electron density distributed uniformly in a macroscopic volume: the constant value for XRR analysis and three-dimensional periodic function in case of HRXRD analysis.

References

  1. 1.
    V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, New York, 2005)Google Scholar
  2. 2.
    E.J. Mittemeijer, P. Scardi (eds), Diffraction Analysis of the Microstructure of Materials (Springer, Berlin, 2004)Google Scholar
  3. 3.
    U.F. Kocks, C.N. Tom\(\acute{e}\), H.-R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effects on Material Properties (Cambridge University Press, Cambridge, 1998)Google Scholar
  4. 4.
    I.C. Noyan, J.B. Cohen, Residual Stress: Mesurements by Diffraction and Interpretation (Springer, Berlin, 1987)Google Scholar
  5. 5.
    U. Welzel, S. Freour, E.J. Mittemeijer, Direction-dependent elastic grain-interaction models a comparative study. Phil. Mag. 85(21), 2391–2414 (2005)Google Scholar
  6. 6.
    T. Ungár, Dislocation densities, arrangements and character from X-ray diffraction experiments. Mater. Sci. Eng. A 309, 14–22 (2001)CrossRefGoogle Scholar
  7. 7.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity, vol. 7, 3rd edn (Butterworth-Heinemann, Oxford, 1986)Google Scholar
  8. 8.
    Mario Birkholz, Thin Film Analysis by X-Ray Scattering (Wiley, Weinheim, 2006)Google Scholar
  9. 9.
    E. Macherauch, P. Müller, Das \(\sin ^2 \psi \) - Verfahren der röntgenographischen Spannugsmessung. Zeitschrift angewandte Physik 13, 305–312 (1961)Google Scholar
  10. 10.
    V. Uglov, V. Anischik, S. Zlotski, I. Feranchuk, T. Alexeeva, A. Ulyanenkov, J. Brechbuehl, A. Lazar. Surf. Coat. Technol. 202, 2389 (2009)Google Scholar
  11. 11.
    A. Benediktovich, H.H. Guerault, I. Feranchuk, V. Uglov, A. Ulyanenkov, Influence of surface roughness on evaluation of stress gradients in coatings. Mater. Sci. Forum 681, 121–126 (2011)Google Scholar
  12. 12.
    V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation-Application-Assessment (Elsevier Science, Amsterdam, 1997)Google Scholar
  13. 13.
    B.B He, Two-dimensional X-ray Diffraction (Wiley, New Jersey, 2009)Google Scholar
  14. 14.
    Z. Hashin, Analysis of composite materials. J. Appl. Mech. 50(2), 481–505 (1983)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    G.W. Milton, The coherent potential approximation is a realizable effective medium scheme. Commun. Math. Phys. 99(4), 463–500 (1985)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    R.J. Gehr, R.W. Boyd, Optical properties of nanostructured optical materials. Chem. Mater. 8(8), 1807–1819 (1996)CrossRefGoogle Scholar
  17. 17.
    I.M. Lifshitz, L.N. Rosenzweig, To the theory of elastic properties of the polycrystals. Russ. J. Exp. Theoret. Phys. 16(11), 967–980 (1946)Google Scholar
  18. 18.
    J.R. Willis, Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21, 1–78 (1981)MathSciNetADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Jr. W.F. Brown, Solid mixture permittivities. J. Chem. Phys. 23(8), 1514–1517 (1955)Google Scholar
  20. 20.
    D.A.G Bruggeman, The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances. Ann. Phys. 24(132), 636–679 (1935)Google Scholar
  21. 21.
    T. Mura, Micromechanics of Defects in Solids (Springer, New York, 1987)Google Scholar
  22. 22.
    J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A. Math. Phys. Sci. 241(1226), 376–396 (1957)MathSciNetADSCrossRefzbMATHGoogle Scholar
  23. 23.
    E. Kröner, Berechnung der elastischen Konstanten des Vielkristallsaus den Konstanten des Einkristalls. Zeitschrift für Physik A Hadrons and Nuclei 151(4), 504–518 (1958)CrossRefGoogle Scholar
  24. 24.
    U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E.J. Mittemeijer. Stress analysis of polycrystalline thin films and surface regions by x-ray diffraction. J. Appl. Crystallogr. 38(1), 1–29 (2005)Google Scholar
  25. 25.
    A. Andryieuski, S. Ha, A.A. Sukhorukov, Y.S. Kivshar, A.V. Lavrinenko, Bloch-mode analysis for retrieving effective parameters of metamaterials. Phys. Rev. B 86(3), 035127 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    T. Maas Harald Wern, N. Koch, Self-consistent calculation of the X-ray elastic constants of polycrystalline materials for arbitrary crystal symmetry. Mater. Sci. Forum. 404–407, 127–132 (2002)Google Scholar
  27. 27.
    R.A. Lebensohn, O. Castelnau, R. Brenner, P. Gilormini, Study of the antiplane deformation of linear 2-d polycrystals with different microstructures. Int. J. Solids Struct. 42(20), 5441–5459 (2005)Google Scholar
  28. 28.
    W. Voigt, Lehrbuch der Kristallphysik (Leipzig Teubner, 1910)Google Scholar
  29. 29.
    A. Reuss, Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fuer Einkristalle. ZAMM J. Appl. Math. Mech. / Zeitschrift fur Angewandte Mathematik und Mechanik 9(1), 49–58 (1929)Google Scholar
  30. 30.
    R Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A. 65(5), 349 (1952)Google Scholar
  31. 31.
    R.J. Asaro, D.M. Barnett, The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusion. J. Mech. Phys. Solids. 23(1), 77–83 (1975)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids. 10(4), 343–352 (1962)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    G. Kneer, Uber die Berechnung der Elastitatsmoduln vielkristallner Aggregate mit Textur. physica status solidi (b). 9(3), 825–838 (1965)Google Scholar
  34. 34.
    N. Koch, U. Welzel, H. Wern, E.J. Mittemeijer, Mechanical elastic constants and diffraction stress factors of macroscopically elastically anisotropic polycrystals: the effect of grain-shape (morphological) texture. Phil. Mag. 84(33), 3547–3570 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    L.D. Landau, E.M. Lifshitz, J.B. Sykes, J.S. Bell, M.J. Kearsley, L.P. Pitaevskii, Electrodynamics of Continuous Media, vol. 364 (Pergamon Press, Oxford, 1960)Google Scholar
  36. 36.
    J.A. Osborn, Demagnetizing factors of the general ellipsoid. Phys. Rev. 67(11–12), 351–357 (1945)ADSCrossRefGoogle Scholar
  37. 37.
    U. Welzel, M. Leoni, E.J. Mittemeijer, The determination of stresses in thin films; modelling elastic grain interaction. Phil. Mag. 83(5), 603–630 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    D. Faurie, O. Castelnau, R. Brenner, P.O. Renault, E. Le Bourhis, P. Goudeau, In situ diffraction strain analysis of elastically deformed polycrystalline thin films, and micromechanical interpretation. J. Appl. Crystallogr. 42(6), 1073–1084 (2009)CrossRefGoogle Scholar
  39. 39.
    R.W. Vook, F. Witt, Thermally induced strains in evaporated films. J. Appl. Phys. 36(7), 2169–2171 (1965)Google Scholar
  40. 40.
    M. Leoni, U. Welzel, P. Lamparter, EJ Mittemeijer, J.D. Kamminga, Diffraction analysis of internal strain-stress fields in textured, transversely isotropic thin films: theoretical basis and simulation. Phil. Mag. A. 81(3), 597–623 (2001)Google Scholar
  41. 41.
    F.I. Fedorov, The Lorentz Group (Nauka, Moscow, 1979)zbMATHGoogle Scholar
  42. 42.
    E.J. Mittemeijer, Fundamentals of Materials Science: The Microstructure-Property Relationship Using Metals as Model Systems (Springer, Heidelberg, 2011)Google Scholar
  43. 43.
    T. Ungár, J. Gubicza, G. Ribárik, A. Borbély, Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34(3), 298–310 (2001)Google Scholar
  44. 44.
    G. Ribarik, T. Ungar, Characterization of the microstructure in random and textured polycrystals and single crystals by diffraction line profile analysis. Special topic section: local and near surface structure from diffraction. Mater. Sci. Eng. A, 528(1), 112–121 (2010)Google Scholar
  45. 45.
    H.J. Bunge, P.R. Morris, Texture Analysis in Materials Science: Mathematical Methods (Butterworths, London, 1982)Google Scholar
  46. 46.
    G.A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover Publications, Mineola, 2000)Google Scholar
  47. 47.
    I.M. Gelfand, R.A. Minlos, Z.Y. Shapiro, H.K. Farahat, Representations of the Rotation and Lorentz Groups and Their Applications, vol. 35 (Pergamon Press, New York, 1963)Google Scholar
  48. 48.
    A. Benediktovitch, F. Rinaldi, S. Menzel, K. Saito, T. Ulyanenkova, T. Baumbach, I.D. Feranchuk, A. Ulyanenkov, Lattice tilt, concentration, and relaxation degree of partly relaxed InGaAs/GaAs structures. Phys. Status Solidi (a). 208(11), 2539–2543 (2011)Google Scholar
  49. 49.
    Y.I. Sirotin, M.P. Shaskolskaya, The Basics of Crystallophysics (Nauka, Moscow, 1975)Google Scholar
  50. 50.
    L.J. Walpole, On the overall elastic moduli of composite materials. J. Mech. Phys. Solids. 17(4), 235–251 (1969)ADSCrossRefzbMATHGoogle Scholar
  51. 51.
    S. Matthies, K. Helming, T. Steinkopff, K. Kunze, Standard distributions for the case of fibre textures. Phys. Status Solidi (b). 150(1), K1–K5 (1988)Google Scholar
  52. 52.
    T. Eschner et al., Texture analysis by means of model functions. Textures Microstruct. 21, 139–139 (1993)CrossRefGoogle Scholar
  53. 53.
    A. Benediktovich, I. Feranchuk, A. Ulyanenkov, Calculation of X-ray stress factors using vector parameterization and irreducible representations for SO(3) group. Mater. Sci. Forum. 681, 387–392 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrei Benediktovitch
    • 1
    Email author
  • Ilya Feranchuk
    • 1
  • Alexander Ulyanenkov
    • 2
  1. 1.Physics DepartmentBelarusian State UniversityMinskBelarus
  2. 2.Rigaku Europe SEEttlingenGermany

Personalised recommendations