Advertisement

X-Ray Diffraction in Ideal Crystals

  • Andrei BenediktovitchEmail author
  • Ilya Feranchuk
  • Alexander Ulyanenkov
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 183)

Abstract

The reflection phenomena, discussed in the previous chapter, are inherent for radiation of arbitrary wavelength.

References

  1. 1.
    H. Cole, B.W. Batterman. Dynamical diffraction of X rays by perfect crystals. Rev. Mod. Phys. 36(3), 681–717 (1964)Google Scholar
  2. 2.
    A. Authier, Dynamical Theory of X-ray Diffraction (Oxford University Press, New York, 2001)Google Scholar
  3. 3.
    U. Pietsch, V. Holy, T. Baumbach. High-resolution X-ray scattering: from thin films to lateral nanostructures. 2nd edn. (Springer, Heidelberg, 2004)Google Scholar
  4. 4.
    S.-L. Chang, Multiple Diffraction of X-rays in Crystals (Springer, Heidelberg, 1984)Google Scholar
  5. 5.
    S. Marchesini, A. Noy Stefan, P. Hau-Riege, C. Cui, M.R. Howells, R. Rosen, H. He, J.C.H. Spence, U. Weierstall, T. Beetz, C.J. David Shapiro, H.N. Chapman, A. Barty. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006)Google Scholar
  6. 6.
    I.K. Robinson, I.A. Vartanyants, G.J. Williams, M.A. Pfeifer, J.A. Pitney, Reconstruction of the shapes of gold nanocrystals using coherent X-ray diffraction. Phys. Rev. Lett. 87, 195505 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Condensed Matter, 2nd edn. (Nauka, Moscow, 1982) (in Russian)Google Scholar
  8. 8.
    V.K. Ignatovich, M. Utsura, Handbook of Neutron Optics (Wiley-VCH, Weinheim, 2010)Google Scholar
  9. 9.
    C.G. Darwin. Xcii. the reflexion of X-rays from imperfect crystals. Phil. Mag. Ser. 6, 43(257), 800–829 (1922)Google Scholar
  10. 10.
    J.M. Cowley, Diffraction Physics. (Elsevier Science B.V., New York, 1995)Google Scholar
  11. 11.
    A.M. Afanasev, O.G. Melikyan, A modified dynamical theory (mdt) of X-ray diffraction in extremely asymmetric schemes. Phys. Status Solidi (a), 122(2), 459–468 (1990)Google Scholar
  12. 12.
    V.E. Dmitrienko, K. Ishida, A. Kirfel, E.N. Ovchinnikova, Polarization anisotropy of X-ray atomic factors and ‘forbidden’ resonant reflections. Acta Crystallogr. A 61(5), 481–493 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    D.H. Templeton, L.K. Templeton, X-ray birefringence, forbidden reflections, and direct observation of structure-factor phases. Acta Crystallogr. A 43(4), 573–574 (1987)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Caticha, Diffraction of X rays at the far tails of the Bragg peaks. ii. Darwin dynamical theory. Phys. Rev. B 49, 33–38 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    T.A. Alexeeva, A.I. Benediktovich, I.D. Feranchuk, T. Baumbach, A. Ulyanenkov, Long-range scans and many-beam effects for high-resolution X-ray diffraction from multilayered structures: experiment and theory. Phys. Rev. B 77, 174114 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    E.M. Lifshitz, L.D. Landau, Quantum Mechanics: Non-Relativistic Theory, 3rd edn. (Pergamon Press, New York , 1977)Google Scholar
  17. 17.
    J.M. Ziman, Principles of the Theory of Solids. (Cambridge University Press, Cambridge 1972)Google Scholar
  18. 18.
    M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    V.M. Kaganer, Crystal truncation rods in kinematical and dynamical X-ray diffraction theories. Phys. Rev. B 75, 245425 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    T. Pfeifer, C. Spielmann, G. Gerber, Femtosecond X-ray science. Rep. Prog. Phys. 69(2), 443 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    V.A. Bushuev, Diffraction of X-ray free-electron laser femtosecond pulses on single crystals in the Bragg and Laue geometry. J. Synchrotron Radiat. 15(5), 495–505 (2008)CrossRefGoogle Scholar
  22. 22.
    W. Graeff, Tailoring the time response of a Bragg reflection to short X-ray pulses. J. Synchrotron Radiat. 11(3), 261–265 (2004)CrossRefGoogle Scholar
  23. 23.
    D. Ksenzov, S. Grigorian, U. Pietsch, Time-space transformation of femtosecond free-electron laser pulses by periodical multilayers. J. Synchrotron Radiat. 15(1), 19–25 (2008)CrossRefGoogle Scholar
  24. 24.
    J.S. Wark, R.W. Lee, Simulations of femtosecond X-ray diffraction from unperturbed and rapidly heated single crystals. J. Appl. Crystallogr. 32(4), 692–703 (1999)CrossRefGoogle Scholar
  25. 25.
    A.P. Ulyanenkov, S.A. Stepanov, U. Pietsch, R. Kohler, A dynamical diffraction approach to grazing-incidence X-ray diffraction by multilayers with lateral lattice misfits. J. Phys. D Appl. Phys. 28(12), 2522 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    A.I. Benediktovich, I.D. Feranchuk, A. Ulyanenkov, X-ray dynamical diffraction from partly relaxed epitaxial structures. Phys. Rev. B 80, 235315 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    D.W. Berreman, A.T. Macrander, Asymmetric X-ray diffraction by strained crystal wafers: 8x8-matrix dynamical theory. Phys. Rev. B 37, 6030–6040 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    A. Caticha, Diffraction of X rays at the far tails of the bragg peaks. Phys. Rev. B 47, 76–83 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    S. Stepanov, R. Kohler, A dynamical theory of extremely asymmetric X-ray diffraction taking account of normal lattice strain. J. Phys. D Appl. Phys. 27(9), 1922 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    S.A. Stepanov, E.A. Kondrashkina, R. Köhler, D.V. Novikov, G. Materlik, S.M. Durbin, Dynamical X-ray diffraction of multilayers and superlattices: recursion matrix extension to grazing angles. Phys. Rev. B 57, 4829–4841 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    I.K. Robinson, D.J. Tweet, Surface X-ray diffraction. Rep. Progr. Phys. 55(5), 599 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    P.A. Aleksandrov, A.M. Afanasiev, S.A. Stepanov. Bragg-Laue diffraction in inclined geometry. Phys. Status Solidi (a), 86(1), 143–154 (1984)Google Scholar
  33. 33.
    V.M. Kaganer, V.L. Indenbom, M. Vrana, B. Chalupa, Laue-to-Bragg transition in extremely asymmetric dynamic neutron diffraction. Phys. Status Solidi (a) 71(2), 371–380 (1982)Google Scholar
  34. 34.
    A. Ulyanenkov, Grazing-incidence X-ray diffraction from multilayers, taking into account diffuse scattering from rough interfaces. Appl. Phys. A 66, 193–199 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    X. Huang, M. Dudley, A universal computation method for two-beam dynamical X-ray diffraction. Acta Crystallogr. A 59(2), 163–167 (2003)CrossRefGoogle Scholar
  36. 36.
    A. Ulyanenkov, T. Baumbach, N. Darowski, U. Pietsch, K.H. Wang, A. Forchel, T. Wiebach, J. Appl. Phys. 85(3), 1524 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    A. Ulyanenkov, N. Darowski, J. Grenzer, U. Pietsch, K.H. Wang, A. Forchel, Phys. Rev. B 60, 16701 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    U. Pietsch, N. Darowski, A. Ulyanenkov, J. Grenzer, K.H. Wang, A. Forchel, Phys. B 283, 92–96 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    A. Ulyanenkov, K. Inaba, P. Mikulik, N. Darowski, K. Omote, U. Pietsch, J. Grenzer, A. Forchel, J. Phys. D Appl. Phys. 34, A179–A18296 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    Q. Shen, Acta Cryst. A 42, 525 (1986)CrossRefGoogle Scholar
  41. 41.
    S.A. Stepanov, E.A. Kondrashkina, M. Schmidbauer, R. Köhler, J.U. Pfeiffer, T. Jach, A. Yu. Souvorov, Phys. Rev. B 54, 8150 (1996)Google Scholar
  42. 42.
    V. Holý, T. Baumbach, Phys. Rev. B 49, 10668 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    V.M. Kaganer, R. Köhler, M. Schmidbauer, R. Opitz, B. Jenichen, Phys. Rev. B 55, 1793 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrei Benediktovitch
    • 1
    Email author
  • Ilya Feranchuk
    • 1
  • Alexander Ulyanenkov
    • 2
  1. 1.Physics DepartmentBelarusian State UniversityMinskBelarus
  2. 2.Rigaku Europe SEEttlingenGermany

Personalised recommendations