Advertisement

X-Ray Reflectivity

  • Andrei BenediktovitchEmail author
  • Ilya Feranchuk
  • Alexander Ulyanenkov
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 183)

Abstract

The general calculation of the scattered from the sample X-ray intensity requires the solution of the Eq. (2.1). However, the geometry of the experiment has to be also taken into account, because of the mutual arrangement of the X-ray source, the sample and the detector as well as the shape of the sample influence the observed results.

Keywords

Reflection Coefficient Transfer Matrix Wave Field Transition Layer Diffuse Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Prince (ed.), International Tables for Crystallography vol. C (Kluwer Academic Publishers, Dordrecht/Boston/Lomdon, 2004)Google Scholar
  2. 2.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, UK, 1999)Google Scholar
  3. 3.
    B.L. Henke, E.M. Gullikson, J.C. Davis, At. Data Nucl. Data Tables 54, 181 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    J. Daillant, A. Gibaud, X-Ray and Neutron Reflectivity: Principles and Applications (Springer-Verlag, Berlin Heidelberg, 1999)Google Scholar
  5. 5.
    M. Tolan, X-Ray Scattering from Soft-Matter Thin Films (Springer-Verlag, Berlin Heidelberg, 1999)Google Scholar
  6. 6.
    J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics (Wiley, New York, 2001)Google Scholar
  7. 7.
    U. Pietsch, V. Holy, T. Baumbach, High-Resolution X-Ray Scattering: from Thin Films to Lateral Nanostuctures, 2nd edn. (Springer-Verlag, Berlin Heidelberg, 2004)Google Scholar
  8. 8.
    D.K.G. de Boer, Phys. Rev. B 49, 5817 (1994)Google Scholar
  9. 9.
    D.K.G. de Boer, Phys. Rev. B 51, 5297 (1995)Google Scholar
  10. 10.
    D.K.G. de Boer, Phys. Rev. B 53, 6048 (1996)Google Scholar
  11. 11.
    S. Dietrich, A. Haase, Phys. Rep. 260, 1 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    A. Caticha, Phys. Rev. B 52, 9214 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    I.D. Feranchuk, S.I. Feranchuk, L.I. Komarov, A. Ulyanenkov, Phys. Rev. B 67, 235417 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    I.D. Feranchuk, S.I. Feranchuk, A.A. Minkevich, A.P. Ulyanenkov, Phys. Rev. B. 68, 235307 (2003)Google Scholar
  15. 15.
    I. Feranchuk, A. Ulyanenkov, European Patent EP1469302 A 1, (2004)Google Scholar
  16. 16.
    I.D. Feranchuk, S.I. Feranchuk, A.P. Ulyanenkov, Phys. Rev. B. 75, 085414 (2007)Google Scholar
  17. 17.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Condensed Matter, 2nd edn. (Nauka, Moscow, 1982)  (in russian)Google Scholar
  18. 18.
    P.M. Mors, H. Feshbach, Methods of Theoretical Physics, vol. 1 (Springer-Verlag, Berlin, 1987)Google Scholar
  19. 19.
    V.K. Ignatovich, Neutron Optics (Fizmatlit, Moscow, 2006) (in russian)Google Scholar
  20. 20.
    L. Hörmander, The Analysis of Linear Partial Differential Operators (Springer-Verlag, Berlin Heidelberg, 1983)Google Scholar
  21. 21.
    L.D. Landau, E.M. Lifshitz Quantum Mechanics, 3rd edn. (Pergamon Press, Oxford, 1977)Google Scholar
  22. 22.
    S.K. Sinha, E.B. Sirota, S. Garoff, H.B. Stanley, Phys. Rev. B 38, 2297 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    L. Nevot, P. Croce, Rev. Phys. Appl. 15, 761 (1980)CrossRefGoogle Scholar
  24. 24.
    I.D. Feranchuk, A.A. Minkevich, A.P. Ulyanenkov, Eur. Phys. J. Appl. Phys. 24, 21 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    J. Als-Nielsen, D. Jacquemann, K. Kjaer, F. Leveiller, M. Lahav, L. Leseirowitz, Phys. Rep. 246, 251 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    I.D. Feranchuk, L.I. Komarov, I.V. Nichipor, A.P. Ulyanenkov, Ann. Phys. NY 238, 370 (1995)Google Scholar
  27. 27.
    P.S. Epstein, Proc. Natl. Acad. Sci. USA 16, 67 (1930)ADSGoogle Scholar
  28. 28.
    P. Walters, An Introduction to Ergodic Theory (Springer, New York, 1982)Google Scholar
  29. 29.
    V. Holý, C. Giannini, L. Tapfer, T. Marschner, W. Stolz, Phys. Rev. B 55, 9960 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    L.G. Parratt, Phys. Rev. 95, 359 (1954)ADSCrossRefGoogle Scholar
  31. 31.
    L. Abeles, Ann. Phys (Paris) 3, 504 (1948)Google Scholar
  32. 32.
    L. Abeles, Ann. Phys (Paris) 5, 596 (1950)Google Scholar
  33. 33.
    D.W. Berremen, Phys. Rev. B 14, 4313 (1976)Google Scholar
  34. 34.
    S.A. Stepanov, R.Köhler, J. Phys. D 27, 1923 (1994)Google Scholar
  35. 35.
    J.M. Ziman, Principles of The Theory of Solids (Oxford Univ. Press, New York, 2001)Google Scholar
  36. 36.
    A.P. Payne, B.M. Clemens, Phys. Rev. B 47, 2289 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    T.-Y. Wu, T. Omura, Quantum Theory of Scattering (Prentice-Hall Inc., New York, 1962)zbMATHGoogle Scholar
  38. 38.
    R.W. James, The Optical Principle of the Diffraction of X-rays (G.Bell and Sons, London, 1962)Google Scholar
  39. 39.
    V. Holy, T. Baumbach, Phys. Rev. B 49, 10668 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    D.E. Goldberg, E. David, Genetic Algorithms in Search Optimization and Machine Learning (Addison-Wesley Reading, MA, 1989)Google Scholar
  41. 41.
    A. Ulyanenkov, K. Omote, J. Harada, Physica B 283, 237 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    A. Ulyanenkov, S. Sobolewski, J. Phys.D: Appl. Phys. 38, A235 (2005)Google Scholar
  43. 43.
    A. Ulyanenkov, A. Takase, M. Kuribayashi, K. Ishida, A. Ohtake, K. Arai, T. Hanada, T. Yasuda, H. Tomita, S. Komiya, J. Appl. Phys. 85, 1520 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    A. Ulyanenkov, R. Matsuo, K. Omote, K. Inaba, J. Harada, M. Ishino, M. Nishii, O. Yoda, J. Appl. Phys. 87, 7255 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrei Benediktovitch
    • 1
    Email author
  • Ilya Feranchuk
    • 1
  • Alexander Ulyanenkov
    • 2
  1. 1.Physics DepartmentBelarusian State UniversityMinskBelarus
  2. 2.Rigaku Europe SEEttlingenGermany

Personalised recommendations