Abstract

We investigate the application of multivalued decision diagrams (MDDs) to multidimensional bin packing problems. In these problems, each bin has a multidimensional capacity and each item has an associated multidimensional size. We develop several MDD representations for this problem, and explore different MDD construction methods including a new heuristic-driven depth-first compilation scheme. We also derive MDD restrictions and relaxations, using a novel application of a clustering algorithm to identify approximate equivalence classes among MDD nodes. Our experimental results show that these techniques can significantly outperform current CP and MIP solvers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Behle, M.: On threshold BDDs and the optimal variable ordering problem. Journal of Combinatorial Optimization 16, 107–118 (2008)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bergman, D., Cire, A.A., van Hoeve, W.-J., Yunes, T.: BDD-based heuristics for binary optimization (submitted, 2013)Google Scholar
  4. 4.
    Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Transactions on Computers 45(9), 993–1002 (1996)MATHCrossRefGoogle Scholar
  6. 6.
    Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Heckbert, P.: Color image quantization for frame buffer display. In: SIGGRAPH 1982, pp. 297–307. ACM, New York (1982)Google Scholar
  8. 8.
    Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Knuth, D.E.: The Art of Computer Programming, vol. 4, fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley (2009)Google Scholar
  10. 10.
    Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey. European Journal of Operational Research 141(2), 241–252 (2002)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Martello, S., Pisinger, D., Vigo, D.: The three-dimensional bin packing problem. Operations Research 48, 256–267 (2000)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Schaus, P., Van Hentenryck, P., Monette, J.-N., Coffrin, C., Michel, L., Deville, Y.: Solving steel mill slab problems with constraint-based techniques: CP, LNS, and CBLS. Constraints 16(2), 125–147 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM, Philadelphia (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Brian Kell
    • 1
  • Willem-Jan van Hoeve
    • 2
  1. 1.Department of Mathematical SciencesCarnegie Mellon UniversityUSA
  2. 2.Tepper School of BusinessCarnegie Mellon UniversityUSA

Personalised recommendations