Skip to main content

Abstract

Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud) of the current LP relaxation. These strategies naturally extend state-of-the-art methods like strong branching, pseudocost branching, and their hybrids.

We show that by exploiting dual degeneracy, and thus multiple alternative optimal solutions, it is possible to enhance traditional methods. We present preliminary computational results, applying the newly proposed strategy to full strong branching, which is known to be the MIP branching rule leading to the fewest number of search nodes. It turns out that cloud branching can reduce the mean running time by up to 30% on standard test sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benichou, M., Gauthier, J., Girodet, P., Hentges, G., Ribiere, G., Vincent, O.: Experiments in mixed-integer programming. Mathematical Programming 1, 76–94 (1971)

    Article  MathSciNet  Google Scholar 

  2. Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of strategies for mixed integer programming. INFORMS Journal on Computing 11, 173–187 (1999)

    Article  MathSciNet  Google Scholar 

  3. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research Letters 33, 42–54 (2005)

    Article  MathSciNet  Google Scholar 

  4. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin (2007), http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1018

  5. Bixby, R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: Theory and practice – closing the gap. In: Powell, M., Scholtes, S. (eds.) Systems Modelling and Optimization: Methods, Theory, and Applications, pp. 19–49. Kluwer Academic Publisher (2000)

    Google Scholar 

  6. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: Finding cuts in the TSP (A preliminary report). Technical Report 95-05, DIMACS (1995)

    Google Scholar 

  7. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, USA (2007)

    Book  Google Scholar 

  8. Fischetti, M., Monaci, M.: Branching on nonchimerical fractionalities. OR Letters 40(3), 159–164 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 309–311. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Patel, J., Chinneck, J.W.: Active-constraint variable ordering for faster feasibility of mixed integer linear programs. Mathematical Programming 110, 445–474 (2007)

    Article  MathSciNet  Google Scholar 

  11. Karamanov, M., Cornuéjols, G.: Branching on general disjunctions. Mathematical Programming 128(1-2), 403–436 (2011)

    Article  MathSciNet  Google Scholar 

  12. Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 341–355. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  13. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference (DAC 2001), pp. 530–535 (2001), doi:10.1145/378239.379017

    Google Scholar 

  14. Kılınç Karzan, F., Nemhauser, G.L., Savelsbergh, M.W.P.: Information-based branching schemes for binary linear mixed-integer programs. Mathematical Programming Computation 1(4), 249–293 (2009)

    Article  MathSciNet  Google Scholar 

  15. Fischetti, M., Monaci, M.: Backdoor branching. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 183–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010 - Mixed Integer Programming Library version 5. Mathematical Programming Computation 3, 103–163 (2011), http://miplib.zib.de

    Article  MathSciNet  Google Scholar 

  17. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Letters 34(4), 1–12 (2006), http://miplib.zib.de/miplib2003/

    Article  MathSciNet  Google Scholar 

  18. Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. Journal of Global Optimization 14, 217–249 (1999), doi:10.1023/A:1008312714792

    Article  MathSciNet  MATH  Google Scholar 

  19. Caprara, A., Locatelli, M.: Global optimization problems and domain reduction strategies. Mathematical Programming 125, 123–137 (2010), doi:10.1007/s10107-008-0263-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Mathematical Programming 104(1), 91–104 (2005), doi:10.1007/s10107-004-0570-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Achterberg, T.: LP basis selection and cutting planes. Presentation Slides from MIP 2010 Conference in Atlanta (2010), http://www2.isye.gatech.edu/mip2010/program/program.pdf

  22. Achterberg, T.: SCIP: Solving Constraint Integer Programs. Mathematical Programming Computation 1(1), 1–41 (2009), doi:10.1007/s12532-008-0001-1

    Article  MathSciNet  MATH  Google Scholar 

  23. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Technische Universität Berlin (1996)

    Google Scholar 

  24. COR@L: MIP Instances (2010), http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances/

  25. Czyzyk, J., Mesnier, M., Moré, J.: The NEOS server. IEEE Computational Science & Engineering 5(3), 68–75 (1998), http://www.neos-server.org/neos/

    Article  Google Scholar 

  26. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.: An updated mixed integer programming library: MIPLIB 3.0. Optima (58), 12–15 (1998), http://miplib.zib.de/miplib3/miplib.html

  27. Cohen, P.R.: Empirical Methods for Artificial Intelligence. MIT Press (1995)

    Google Scholar 

  28. Gamrath, G.: Improving strong branching by propagation. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 347–354. Springer, Heidelberg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berthold, T., Salvagnin, D. (2013). Cloud Branching. In: Gomes, C., Sellmann, M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2013. Lecture Notes in Computer Science, vol 7874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38171-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38171-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38170-6

  • Online ISBN: 978-3-642-38171-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics