Skip to main content

Abstract

Many mixed-integer constraint satisfaction problems and global optimization problems contain some variables with unbounded domains. Their solution by branch and bound methods to global optimality poses special challenges as the search region is infinitely extended. Many usually strong bounding methods lose their efficiency or fail altogether when infinite domains are involved. Most implemented branch and bound solvers add artificial bounds to make the problem bounded, or require the user to add these. However, if these bounds are too small, they may exclude a solution, while when they are too large, the search in the resulting huge but bounded region may be very inefficient. Moreover, if the global solver must provide a rigorous guarantee (as for the use in computer-assisted proofs), such artificial bounds are not permitted without justification by proof.

We developed methods based on compactification and projective geometry as well as asymptotic analysis to cope with the unboundedness in a rigorous manner. Based on projective geometry we implemented two different versions of the basic idea, namely (i) projective constraint propagation, and (ii) projective transformation of the variables, in the rigorous global solvers COCONUT and GloptLab. Numerical tests demonstrate the capability of the new technique, combined with standard pruning methods, to rigorously solve unbounded global problems. In addition, we present a generalization of projective transformation based on asymptotic analysis.

Compactification and projective transformation, as well as asymptotic analysis, are fruitless in discrete situations but they can very well be applied to compute bounded relaxations, and we will present methods for doing that in an efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benhamou, F., Goualard, F.: Universally Quantified Interval Constraints. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 67–82. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising Hull and Box Consistency. In: Proceedings of the International Conference on Logic Programming (ICLP 1999), Las Cruces, USA, pp. 230–244 (1999)

    Google Scholar 

  3. Benhamou, F., Older, W.J.: Applying Interval Arithmetic to Real, Integer and Boolean Constraints. Journal of Logic Programming, 32–81 (1997)

    Google Scholar 

  4. Berz, M., Makino, K.: Verified integration of odes and flows using differential algebraic methods on high-order taylor models. Reliable Computing 4, 361–369 (1998)

    Article  MathSciNet  Google Scholar 

  5. Berz, M.: COSY INFINITY version 8 reference manual. Technical report, National Superconducting Cyclotron Lab., Michigan State University, East Lansing, Mich., MSUCL–1008 (1997)

    Google Scholar 

  6. Domes, F.: Gloptlab-a configurable framework for solving continuous, algebraic CSPs. In: IntCP, Int. WS on Interval Analysis, Constraint Propagation, Applications, at CP Conference, pp. 1–16 (2009)

    Google Scholar 

  7. Domes, F.: Gloptlab: a configurable framework for the rigorous global solution of quadratic constraint satisfaction problems. Optimization Methods & Software 24(4-5), 727–747 (2009)

    Article  MathSciNet  Google Scholar 

  8. Domes, F., Neumaier, A.: Verified global optimization with gloptlab. PAMM 7(1), 1020101–1020102 (2008)

    Article  Google Scholar 

  9. Eiermann, M.C.: Adaptive Berechnung von Integraltransformationen mit Fehlerschranken. PhD thesis, Institut für Angewandte Mathematik der Albert–Ludwigs–Universität Freiburg im Breisgau (October 1989)

    Google Scholar 

  10. Granvilliers, L., Goualard, F., Benhamou, F.: Box Consistency through Weak Box Consistency. In: Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 1999), pp. 373–380 (November 1999)

    Google Scholar 

  11. Griewank, A., Corliss, G.F.: Automatic Differentiation of Algorithms. SIAM Publications, Philadelphia (1991)

    MATH  Google Scholar 

  12. Hansen, E.: Global Optimization using Interval Analysis. Marcel Dekker, New York (1992)

    MATH  Google Scholar 

  13. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, 1st edn. Springer (2001)

    Google Scholar 

  14. Kearfott, R.: Decomposition of arithmetic expressions to improve the behavior of interval iteration for nonlinear systems. Computing 47(2), 169–191 (1991)

    Article  MathSciNet  Google Scholar 

  15. McCormick, G.: Computability of global solutions to factorable nonconvex programs: Part iconvex underestimating problems. Mathematical Programming 10(1), 147–175 (1976)

    Article  MathSciNet  Google Scholar 

  16. Moore, R.E.: Interval Arithmetic and Automatic Error Analysis in Digital Computing. PhD thesis, Appl. Math. Statist. Lab. Rep. 25. Stanford University (1962)

    Google Scholar 

  17. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  18. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  19. Neumaier, A.: Taylor forms - use and limits. Reliable Computing 9, 43–79 (2002)

    Article  MathSciNet  Google Scholar 

  20. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numerica 13(1), 271–369 (2004)

    Article  MathSciNet  Google Scholar 

  21. Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global optimization (2010); Optimzation Online

    Google Scholar 

  22. Ryoo, H., Sahinidis, N.: A branch-and-reduce approach to global optimization. Journal of Global Optimization 8(2), 107–138 (1996)

    Article  MathSciNet  Google Scholar 

  23. Schichl, H.: Global optimization in the COCONUT project. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Numerical Software with Result Verification. LNCS, vol. 2991, pp. 243–249. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Schichl, H., Markót, M.C., et al.: The COCONUT Environment. Software, http://www.mat.univie.ac.at/coconut-environment

  25. Schichl, H., Markót, M.C.: Algorithmic differentiation techniques for global optimization in the coconut environment. Optimization Methods and Software 27(2), 359–372 (2012)

    Article  MathSciNet  Google Scholar 

  26. Schichl, H., Neumaier, A.: Exclusion regions for systems of equations. SIAM Journal on Numerical Analysis 42(1), 383–408 (2004)

    Article  MathSciNet  Google Scholar 

  27. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. Journal of Global Optimization 33(4), 541–562 (2005)

    Article  MathSciNet  Google Scholar 

  28. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.H., Nguyen, T.V.: Benchmarking global optimization and constraint satisfaction codes. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) COCOS 2002. LNCS, vol. 2861, pp. 211–222. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  29. Silaghi, M.-C., Sam-Haroud, D., Faltings, B.V.: Search Techniques for Non-linear Constraint Satisfaction Problems with Inequalities. In: Stroulia, E., Matwin, S. (eds.) AI 2001. LNCS (LNAI), vol. 2056, pp. 183–193. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  30. Stolfi, J., Andrade, M., Comba, J., Van Iwaarden, R.: Affine arithmetic: a correlation-sensitive variant of interval arithmetic, Web document (1994)

    Google Scholar 

  31. Van Hentenryck, P.: Numerica: A Modeling Language for Global Optimization. In: Proceedings of IJCAI 1997 (1997)

    Google Scholar 

  32. Vu, X.H., Sam-Haroud, D., Silaghi, M.C.: Numerical Constraint Satisfaction Problems with Non-isolated Solutions. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) COCOS 2002. LNCS, vol. 2861, pp. 194–210. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  33. Vu, X., Schichl, H., Sam-Haroud, D.: Using directed acyclic graphs to coordinate propagation and search for numerical constraint satisfaction problems. In: 16th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2004, pp. 72–81. IEEE (2004)

    Google Scholar 

  34. Vu, X., Schichl, H., Sam-Haroud, D.: Interval propagation and search on directed acyclic graphs for numerical constraint solving. Journal of Global Optimization 45(4), 499–531 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schichl, H., Neumaier, A., Markót, M.C., Domes, F. (2013). On Solving Mixed-Integer Constraint Satisfaction Problems with Unbounded Variables. In: Gomes, C., Sellmann, M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2013. Lecture Notes in Computer Science, vol 7874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38171-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38171-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38170-6

  • Online ISBN: 978-3-642-38171-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics