Skip to main content

Hybrid Theory of Electron-Hydrogenic Systems Elastic Scattering

  • Chapter
Book cover New Trends in Atomic and Molecular Physics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 76))

  • 1253 Accesses

Abstract

Accurate electron-hydrogen and electron-hydrogenic cross sections are required to interpret various experiments. Scattering from such simple systems allows us to test various scattering theories. The incident electron produces a distortion of the target which results into a long-range polarization potential in the Schrödinger equation for the scattering function. There are also short-range correlations. In this article, we show how to take into account these two effects at the same time variationally. The polarization is considered to take place whether the electron is outside the target-electron orbit or inside it. Phase shifts have been calculated for the scattering from hydrogen atom, He+ and Li++ positive ions. The S-wave phase shifts calculated here have lower bounds and they increase as the number of terms in the correlation function is increased. It is shown that only short expansions are needed to obtain accurate results. The results are compared with the previous calculations. Resonance parameters for the resonances in He and Li+ have been calculated by calculating phase shifts in the resonance regions. The results are compared with the previous calculations and the merit of the present approach compared to the previous approach is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Temkin, Phys. Rev. 107, 1004 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. K.V. Vasavada, A. Temkin, Phys. Rev. 160, 109 (1967)

    Article  ADS  Google Scholar 

  3. C. Schwartz, Phys. Rev. 124, 1468 (1968)

    Article  ADS  Google Scholar 

  4. H. Feshbach, Ann. Phys. 19, 287 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. A.K. Bhatia, A. Temkin, Phys. Rev. 64, 032709 (2001)

    Article  ADS  Google Scholar 

  6. A.K. Bhatia, Phys. Rev. A 66, 064702 (2002)

    Article  ADS  Google Scholar 

  7. A.K. Bhatia, Phys. Rev. A 69, 032714 (2004)

    Article  ADS  Google Scholar 

  8. A.K. Bhatia, Phys. Rev. A 73, 012705 (2006)

    Article  ADS  Google Scholar 

  9. A.K. Bhatia, in Atomic Structure and Collision Processes, edited by M. Mohan (Narosa Publishing House, New Delhi, 2010), pp. 87–103

    Google Scholar 

  10. A.K. Bhatia, Phys. Rev. A 75, 032713 (2007)

    Article  ADS  Google Scholar 

  11. P.M. Morse, W.P. Allis, Phys. Rev. 44, 269 (1933)

    Article  ADS  Google Scholar 

  12. A.K. Bhatia, A. Temkin, Rev. Mod. Phys. 36, 1050 (1964)

    Article  ADS  MATH  Google Scholar 

  13. J. Shertzer, A. Temkin, Phys. Rev. A 74, 052701 (2006)

    Article  ADS  Google Scholar 

  14. T. Scholz, P. Scott, P.G. Burke, J. Phys. B 21, L139 (1988)

    Article  ADS  Google Scholar 

  15. A. Temkin, Phys. Rev. Lett. 6, 354 (1961)

    Article  ADS  Google Scholar 

  16. P.G. Burke, A.J. Taylor, J. Phys. B 2, 44 (1969)

    Article  ADS  Google Scholar 

  17. T.T. Gien, J. Phys. B 35, 4475 (2002)

    Article  ADS  Google Scholar 

  18. T.T. Gien, J. Phys. B 36, 2291 (2003)

    Article  ADS  Google Scholar 

  19. P.G. Burke, D.F. Gallaher, S. Geltman, J. Phys. B 2, 1142 (1969)

    Article  ADS  Google Scholar 

  20. P.G. Burke, H.M. Schey, Phys. Rev. 126, 147 (1962)

    Article  ADS  Google Scholar 

  21. A.K. Bhatia, A. Temkin, Phys. Rev. A 11, 2018 (1975)

    Article  ADS  Google Scholar 

  22. A.K. Bhatia, Phys. Rev. A 15, 1315 (1977)

    Article  ADS  Google Scholar 

  23. K. Omidvar, Phys. Rev. 133, A970 (1964)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bhatia .

Editor information

Editors and Affiliations

Appendix

Appendix

We will briefly describe the non-iterative method for solving integrodifferential equations [23]. Consider the equation for the scattering function u(r) given by

$$ \biggl[ \frac{d^{2}}{dr^{2}} + V(r) + k^{2} \biggr]u(r) = g(r)\int_{ 0}^{ \infty} f(x)u(x)dx. $$
(A.1)

Let

$$ u(r)=u_0(r) + Cu_1(r). $$
(A.2)

The constant C represents the definite integral in Eq. (A.1).

Substituting u(r) in Eq. (A.1), we get two equations

$$ \biggl[ \frac{d^{2}}{dr^{2}} + V(r) + k^{2} \biggr]u_{0}(r) = 0, $$
(A.3)
$$ \biggl[ \frac{d^{2}}{dr^{2}} + V(r) + k^{2} \biggr]u_{1}(r) = g(r). $$
(A.4)

These two equations can be solved easily. The substitution of (A.2) in C gives

$$ C = \int_{0}^{\infty} f(x)u_{0}(x)dx + C \int_{0}^{\infty} f(x)u_{1}(x)dx = I_{0} + CI_{1}. $$
(A.5)

Having calculated u 0 and u 1, I 0 and I 1 can be calculated. From the above equation, we can now solve for C. We get

$$ C = \frac{I_{0}}{(1 - I_{1})}. $$
(A.6)

Equation (A.1) can now be written as

$$ \biggl[ \frac{d^{2}}{dr^{2}} + V(r) + k^{2} \biggr]u(r) = Cg(r). $$
(A.7)

Now the right-hand side is known and this equation can be solved for u(r). This method can be generalized to any number of definite integrals.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhatia, A.K. (2013). Hybrid Theory of Electron-Hydrogenic Systems Elastic Scattering. In: Mohan, M. (eds) New Trends in Atomic and Molecular Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38167-6_8

Download citation

Publish with us

Policies and ethics