Skip to main content

High Accuracy Non-LTE Modeling of X-Ray Radiation in Dense Matter

  • Chapter
New Trends in Atomic and Molecular Physics

Abstract

X-rays are emitted from a variety of astrophysical objects in the universe. With the advancement of experimental technologies, intense and very bright X-ray sources are also being produced in the laboratory. Similar progress in theoretical investigations has made it possible to accurately model the radiation and spectroscopy of X-rays from both laboratory and astrophysical sources. Present-day Z-pinch experiments generate 200 TW peak power, 5–10 ns duration X-ray bursts that provide new opportunities to advance radiation science. The experiments spotlight the underlying atomic and plasma physics and offer inertial confinement fusion and astrophysics applications. Spectroscopy is a key diagnostic tool and its reliability depends on the accuracy and reliability of the atomic and plasma physics models used to interpret the data. We report the current status of our theoretical investigations of X-ray spectroscopy using state-of-the-art atomic and plasma modeling to analyze the data obtained from Z machine at the US Sandia National Laboratories. Analysis used for Z-pinches can also be used to study ICF and astrophysical plasmas where laboratory measurements and simulations are the only means to interpret observed data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.P. Apruzese, J. Quant. Spectrosc. Radiat. Transf. 34, 447 (1985)

    Article  ADS  Google Scholar 

  2. J.P. Apruzese, J. Davis, K.G. Whitney, J.W. Thornhill, P.C. Kepple, R.W. Clark, C. Deeney, C.A. Coverdale, T.W.L. Sanford, Phys. Plasmas 9(5), 2411 (2002)

    Article  ADS  Google Scholar 

  3. P. Beiersdorfer, T. Phillips, V.L. Jacobs, K.W. Hill, M. Bitter, S. von Goeler, S.M. Kahn, Astrophys. J. 409, 846 (1993)

    Article  ADS  Google Scholar 

  4. S.I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)

    ADS  Google Scholar 

  5. R.W. Clark, J. Davis, J.P. Apruzese, J.L. Giuliani, J. Quant. Spectrosc. Radiat. Transf. 53(3), 307 (1995)

    ADS  Google Scholar 

  6. R. Clark, J. Davis, M. Blaha, J.L. Giuliani, Laser Part. Beams 19, 557–577 (2001)

    ADS  Google Scholar 

  7. C.A. Coverdale, B. Jones, P.D. LePell, C. Deeney, A.S. Safronova, V.L. Kantsyrev, D. Fedin, N. Ouart, V. Ivanov, J. Chittenden, V. Nalajala, S. Pokola, I. Shrestha, in The 6th International Conference on Dense Z-Pinches. AIP Conference Proceedings, vol. 808 (2006), p. 45

    Google Scholar 

  8. C.A. Coverdale, B. Jones, D.J. Ampleford, J. Chittenden, C. Jennings, J.W. Thornhill, J.P. Apruzese, R.W. Clark, K.G. Whitney, A. Dasgupta, J. Davis, J. Guiliani, P.D. LePell, C. Deeney, D.B. Sinars, M.E. Cuneo, High Energy Density Phys. 6, 143 (2010)

    Article  ADS  Google Scholar 

  9. A. Dasgupta, K.G. Whitney, M. Blaha, M. Buie, Phys. Rev. A 46, 5973 (1992)

    Article  ADS  Google Scholar 

  10. A. Dasgupta, K.G. Whitney, H.L. Zhang, D.H. Sampson, Phys. Rev. E 55, 3460 (1997)

    Article  ADS  Google Scholar 

  11. A. Dasgupta, J. Davis, R.W. Clark, J.W. Thornhill, J.L. Giuliani, K.G. Whitney, in The 7th International Conference on Dense Z-Pinches. AIP Conference Proceedings, vol. 1088 (2009), p. 37

    Google Scholar 

  12. A. Dasgupta, J.G. Giuliani, J. Davis, R.W. Clark, C.A. Coverdale, B. Jones, D. Ampleford, IEEE Trans. Plasma Sci. 38(4), 598 (2010), Special Issue Z-Pinch Plasmas

    Article  ADS  Google Scholar 

  13. A. Dasgupta, R.W. Clark, N.D. Ouart, J.L. Giuliani, W. Thornhill, J. Davis, B. Jones, D.J. Ampleford, S.B. Hansen, C.A. Coverdale, High Energy Density Phys. 8, 284 (2012)

    Article  ADS  Google Scholar 

  14. J. Davis, R.W. Clark, J.L. Giuliani, J.W. Thornhill, C. Deeny, IEEE Trans. Plasma Sci. 26, 1192 (1998)

    Article  ADS  Google Scholar 

  15. C. Deeney, M.R. Douglas, R.B. Spielman, T.J. Nash, D.L. Peterson, P. L’Eplattenier, G.A. Chandler, J.F. Seamen, K.W. Struve, Phys. Rev. Lett. 81, 4883 (1998)

    Article  ADS  Google Scholar 

  16. H. Gabriel, K.J.H. Philips, Mon. Not. R. Astron. Soc. 189, 319 (1979)

    ADS  Google Scholar 

  17. M.F. Gu, Astrophys. J. 590, 1131 (2003)

    Article  ADS  Google Scholar 

  18. M.F. Gu, Can. J. Phys. 86, 675 (2008)

    Article  ADS  Google Scholar 

  19. S.B. Hansen, J. Bauche, C. Bauche-Arnoult, M.F. Gu, High Energy Density Phys. 3, 109 (2007)

    Article  ADS  Google Scholar 

  20. S.B. Hansen, B. Jones, J.L. Giuliani, J.P. Apruzese, J.W. Thornhill, H.A. Scott, D.J. Ampleford, C.A. Jennings, C.A. Coverdale, M.E. Cuneo, G.A. Rochau, J.E. Bailey, A. Dasgupta, R.W. Clark, J. Davis, High Energy Density Phys. 7, 303 (2011)

    Article  ADS  Google Scholar 

  21. V.L. Jacobs, G.A. Doschek, J.F. Seely, R.D. Cowan, Phys. Rev. A 39, 2411 (1989)

    Article  ADS  Google Scholar 

  22. B. Jones, C.A. Coverdale, C. Deeney, D.B. Sinars, E.M. Waisman, M.E. Cuneo, D.J. Ampleford, D. LePell, K.R. Cochrane, J.W. Thornhill, J.P. Apruzese, A. Dasgupta, K.G. Whitney, R.W. Clark, J.P. Chittenden, Phys. Plasmas 15, 122703 (2008)

    Article  ADS  Google Scholar 

  23. R. Rodríguez, J.M. Gil, R. Florido, J.G. Rubiano, P. Martel, E. Mínguez, in 34th EPS Conference on Plasma Physics, Warsaw, 2–6 July 2007. ECA, vol. 31F (2007), p. 2.092

    Google Scholar 

  24. F.B. Rosmej, J. Phys. B, At. Mol. Opt. Phys. 30, L819–L828 (1997)

    Article  ADS  Google Scholar 

  25. J.W. Thornhill, A.L. Velikovich, R.W. Clark, J.P. Apruzese, J. Davis, K.G. Whitney, P.L. Coleman, C.A. Coverdale, C. Deeney, B.M. Jones, P.D. Lepell, IEEE Trans. Plasma Sci. 34, 2377 (2006)

    Article  ADS  Google Scholar 

  26. S.M. Vinko, O. Ciricosta, B.I. Cho, K. Engelhorn, H.K. Chung, C.R. Brown, T. Burian, J. Chalupský, R.W. Falcone, C. Graves, V. Hájková, A. Higginbotham, L. Juha, J. Krzywinski, H.J. Lee, M. Messerschmidt, C.D. Murphy, Y. Ping, A. Scherz, W. Schlotter, S. Toleikis, J.J. Turner, L. Vysin, T. Wang, M.B. Wu, U. Zastrau, D. Zhu, R.W. Lee et al., Nature 482, 59 (2012)

    Article  ADS  Google Scholar 

  27. Z1860 data obtained from SNL (courtesy of Jones B., Ampleford D.)

    Google Scholar 

  28. Z581 data obtained from SNL (courtesy of Coverdale C.)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy/NNSA. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arati Dasgupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dasgupta, A. et al. (2013). High Accuracy Non-LTE Modeling of X-Ray Radiation in Dense Matter. In: Mohan, M. (eds) New Trends in Atomic and Molecular Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38167-6_5

Download citation

Publish with us

Policies and ethics