Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7860))

  • 1521 Accesses

Abstract

We seek universal categorical conditions ensuring the representability of all partial recursive functions. In the category Pfn of sets and partial functions, the natural numbers provide both an initial algebra and a final coalgebra for the functor 1 + −. We recount how finality yields closure of the partial functions on natural numbers under Kleene’s μ-recursion scheme. Noting that Pfn is not cartesian, we then build on work of Paré and Román, obtaining weak initiality and finality conditions on natural numbers algebras in monoidal categories that ensure the (weak) representability of all partial recursive functions. We further obtain some positive results on strong representability. All these results adapt to Kleisli categories of cartesian categories with natural numbers algebras. However, in general, not all partial recursive functions need be strongly representable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alves, S., Fernández, M., Florido, M., Mackie, I.: Linear recursive functions. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Rewriting, Computation and Proof. LNCS, vol. 4600, pp. 182–195. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall (1998); Also available as Reprints in Theory and Applications of Categories, vol. 22, pp. 1–538 (2012), www.tac.mta.ca/tac/reprints/

  3. Bucalo, A., Führmann, C., Simpson, A.K.: An equational notion of lifting monad. Theor. Comput. Sci. 294(1/2), 31–60 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cockett, J.R.B., Lack, S.: Restriction categories II: partial map classification. Theor. Comput. Sci. 294(1/2), 61–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications, vol. 93. CUP (2003)

    Google Scholar 

  6. Gladstone, M.: Simplification of the recursion scheme. J. Symb. Logic 36(4), 653–665 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic. Cambridge Studies in Advanced Mathematics, vol. 7. CUP (1988)

    Google Scholar 

  8. Jacobs, B.P.F.: Semantics of weakening and contraction. Annals of Pure and Applied Logic 69, 73–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jockusch Jr., C.G., Soare, R.I.: \(\mathrm{\Pi}^0_1\) classes and degrees of theories. Trans. Amer. Math. Soc. 173(2), 33–56 (1972)

    MathSciNet  MATH  Google Scholar 

  10. Johnstone, P.T.: Sketches of an Elephant: a Topos Theory Compendium, vol. 1. OUP (2002)

    Google Scholar 

  11. Mackie, I., Román, L., Abramsky, S.: An internal language for autonomous categories. Journal of Applied Categorical Structures 1, 311–343 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Paré, R., Román, L.: Monoidal categories with natural numbers object. Studia Logica 48(3), 361–376 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Power, A.J., Robinson, E.: Premonoidal categories and notions of computation. Mathematical Structures in Computer Science 7(5), 453–468 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Smoryński, C.: Logical Number Theory I. Springer (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plotkin, G. (2013). Partial Recursive Functions and Finality. In: Coecke, B., Ong, L., Panangaden, P. (eds) Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. Lecture Notes in Computer Science, vol 7860. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38164-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38164-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38163-8

  • Online ISBN: 978-3-642-38164-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics