Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7860))

Abstract

This paper outlines the construction of categorical models of higher-order quantum computation. We construct a concrete denotational semantics of Selinger and Valiron’s quantum lambda calculus, which was previously an open problem. We do this by considering presheaves over appropriate base categories arising from first-order quantum computation. The main technical ingredients are Day’s convolution theory and Kelly and Freyd’s notion of continuity of functors. We first give an abstract description of the properties required of the base categories for the model construction to work. We then exhibit a specific example of base categories satisfying these properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proc. 19th Annual IEEE Symp. on Logic in Computer Science (LICS 2004), pp. 415–425. IEEE Computer Soc. Press (2004)

    Google Scholar 

  2. Benton, N.: A mixed linear and non-linear logic: proofs, terms and models (extended abstract). In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 121–135. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  3. Bierman, G.: On intuitionistic linear logic. Ph.D. thesis, Computer Science department, Cambridge University (1993)

    Google Scholar 

  4. Bierman, G.: What is a categorical model of intuitionistic linear logic? In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 78–93. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  5. Borceux, F.: Handbook of Categorical Algebra 1. Cambridge University Press (1994)

    Google Scholar 

  6. Day, B.: On closed categories of functors. Lecture Notes in Math., vol. 137, pp. 1–38. Springer (1970)

    Google Scholar 

  7. Day, B.: A reflection theorem for closed categories. J. Pure Appl. Algebra 2, 1–11 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Day, B.: Note on monoidal localisation. Bull. Austral. Math. Soc. 8, 1–16 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Day, B.: Monoidal functor categories and graphic Fourier transforms, ArXiv:math/0612496 (2006)

    Google Scholar 

  10. Day, B., Street, R.: Kan extensions along promonoidal functors. Theory and Applications of Categories 1(4), 72–78 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Freyd, P., Kelly, G.M.: Categories of continuous functors I. J. Pure and Appl. Algebra 2, 169–191 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–101 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Im, G.B., Kelly, G.M.: A universal property of the convolution monoidal structure. J. Pure and Appl. Algebra 43, 75–88 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kelly, G.M.: Doctrinal adjunction. Lecture Notes in Math., vol. 420, pp. 257–280. Springer (1974)

    Google Scholar 

  15. Kelly, G.M.: Basic Concepts of Enriched Category Theory. LMS Lecture Notes, vol. 64. Cambridge University Press (1982)

    Google Scholar 

  16. Kock, A.: Monads on symmetric monoidal closed categories. Arch. Math. 21, 1–10 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik 23 (1972)

    Google Scholar 

  18. Lambek, J.: Completions of Categories. Lecture Notes in Math., vol. 24. Springer (1966)

    Google Scholar 

  19. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cambridge University Press (1986)

    Google Scholar 

  20. Laplaza, M.L.: Coherence for distributivity. Lecture Notes in Math., vol. 281, pp. 29–65. Springer (1972)

    Google Scholar 

  21. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer (1998)

    Google Scholar 

  22. Malherbe, O.: Categorical models of computation: partially traced categories and presheaf models of quantum computation. Ph.D. thesis, University of Ottawa (2010), Available from arXiv:1301.5087

    Google Scholar 

  23. Melliès, P.-A.: Categorical models of linear logic revisited (2002) (Preprint), Appeared as: Categorical semantics of linear logic. In: Curien, P.-L., Herbelin, H., Krivine, J.-L., Melliès, P.-A. (eds.) Interactive Models of Computation and Program Behaviour. Panoramas et Synthèses, vol. 27. Société Mathématique de France (2009)

    Google Scholar 

  24. Moggi, E.: Computational lambda-calculus and monads. Technical Report ECS-LFCS-88-66, Lab. for Foundations of Computer Science, U. Edinburgh (1988)

    Google Scholar 

  25. Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nielsen, A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  27. Seely, R.: Linear logic, *-autonomous categories and cofree coalgebras. In: Gray, J.W., Scedrov, A. (eds.) Categories in Computer Science and Logic. Contemporary Mathematics, vol. 92, pp. 371–382. Amer. Math. Soc. (1989)

    Google Scholar 

  28. Selinger, P.: Towards a quantum programming language. Math. Structures in Comp. Sci. 14(4), 527–586 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Selinger, P.: Dagger compact closed categories and completely positive maps. In: Selinger, P. (ed.) Proceedings of the Third International Workshop on Quantum Programming Languages (QPL 2005), Chicago. ENTCS, vol. 170, pp. 139–163 (2007)

    Google Scholar 

  30. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical control. Mathematical Structures in Computer Science 16, 527–552 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Selinger, P., Valiron, B.: On a fully abstract model for a quantum functional language. In: Proceedings of the Fourth International Workshop on Quantum Programming Languages. ENTCS, vol. 210, pp. 123–137. Springer (2008)

    Google Scholar 

  32. Selinger, P., Valiron, B.: A linear-non-linear model for a computational call-by-value lambda calculus (Extended abstract). In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 81–96. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  33. Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.) Semantic Techniques in Quantum Computation, pp. 135–172. Cambridge University Press (2009)

    Google Scholar 

  34. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser, S. (ed.) Proc. 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press (1994)

    Google Scholar 

  35. Valiron, B.: Semantics for a higher order functional programming language for quantum computation. Ph.D. thesis, University of Ottawa (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malherbe, O., Scott, P., Selinger, P. (2013). Presheaf Models of Quantum Computation: An Outline. In: Coecke, B., Ong, L., Panangaden, P. (eds) Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. Lecture Notes in Computer Science, vol 7860. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38164-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38164-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38163-8

  • Online ISBN: 978-3-642-38164-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics