Skip to main content

Part of the book series: SpringerBriefs in Water Science and Technology ((BRIEFSWATER))

  • 667 Accesses

Abstract

High concentration of nitrate in drinking water is thought to be related to methemoglobinemia, cancers and even death. Due to the increasing anthropogenic activities, nitrate in groundwater is increasing in many areas of the world. Nitrate contamination is caused by nitrogenous fertilizers, livestock manures, agricultural irrigation, etc. This study overviewed the latest developments in nitrate in situ remediation and summarized advantages and disadvantages of each remediation approach. Currently physical adsorption (PA), biological denitrification and chemical reduction (CR) are the three approaches receiving considerable attention. Nitrate adsorbents in PA will ultimately get to the state of saturation due to adsorbed nitrate and its competing anions. BD is divided into heterotrophic denitrification (HD) and autotrophic denitrification (AD). A large number of liquid, solid and gas organic carbons in HD have been evaluated. For AD, hydrogenotrophic denitrification can be sustained by zero-valent iron (ZVI) which produces cathodic hydrogen. Low solubility of reduced sulfur species, sulfate production and biomass yield limit the applicability of sulfur autotrophic denitrification. The main disadvantage of ZVI-based CR is the release of ammonium under acidic conditions. More recently, a heterotrophic-autotrophic denitrification (HAD) approach has shown encouraging results. PA, cellulose-based HD, ZVI-based CR and AD, and their combined approaches can be applied by means of permeable reactive barrier (PRB). BD PRBs and ZVI PRBs have been successfully applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Autotrophic denitrification

AMO-D:

Aerobic methane-oxidation coupled to denitrification

ANMO-D:

Anaerobic methane-oxidation coupled to denitrification

BATs:

Best available technologies

BD:

Biological denitrification

BET:

Brunauer-Emmett-Teller

CR:

Chemical reduction

DOC:

Dissolved organic carbon

HAD:

Heterotrophic-autotrophic denitrification

HD:

Heterotrophic denitrification

HDTMA:

Hexadecyltrimethyl ammonium bromide

HEPES:

N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic acid]

HRT:

Hydraulic retention time

HT:

Hydrotalcite-type

ICs:

Inert carriers

LOCSs:

Liquid organic carbon sources

MOPS:

3-(N-morpholino)propanesulfonic acid

NOCs:

N-nitroso compounds

NTU:

Nephelometric turbidity unites

NZVI:

Nanoscale ZVI

PA:

Physical adsorption

PCL:

ε-caprolactone

PHB:

3-hydroxybutyrate

PRB:

Permeable reactive barrier

SOCSs:

Solid organic carbon sources

TKN:

Total kjeldahl nitrogen

VFAs:

Volatile fatty acids

WHO:

World health organization

ZVA:

Zero-valent aluminium

ZVI:

Zero-valent iron

References

  • Ahn SC, Oh SY, Cha DK (2008) Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. J Hazard Mater 156:17–22

    Article  CAS  Google Scholar 

  • Alabdula’aly AI, Al-Rehaili AM, Al-Zarah AI, Khan MA (2010) Assessment of nitrate concentration in groundwater in Saudi Arabia. Environ Monit Assess 161:1–9

    Article  CAS  Google Scholar 

  • Alowitz MJ, Scherer MM (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ Sci Technol 36:299–306

    Article  CAS  Google Scholar 

  • Angelopoulos K, Spiliopoulos IC, Mandoulaki A, Theodorakopoulou A, Kouvelas A (2009) Groundwater nitrate pollution in northern part of Achaia Prefecture. Desalination 248:852–858

    Article  CAS  Google Scholar 

  • Aslan S, Turkman A (2003) Biological denitrification of drinking water using various natural organic solid substrates. Wat Sci Technol 48:489–495

    CAS  Google Scholar 

  • Beneš V, Pĕkný V, Skořepa J, Vrba J (1989) Impact of diffuse nitrate pollution sources on groundwater quality-some examples from Czechoslovakia. Environ Health Perspect 83:5–24

    Google Scholar 

  • Bijay-Singh Yadvinder-Singh, Sekhon GS (1995) Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries. J Contam Hydrol 20:167–184

    Article  CAS  Google Scholar 

  • Blowes DW, Robertson WD, Ptacek CJ, Merkley C (1994) Removal of agricultural nitrate from tile-drainage effluent water using in-line bioreactors. J Contam Hydrol 15:207–221

    Article  CAS  Google Scholar 

  • Boley A, Müller W-R, Haider G (2000) Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquacult Eng 22:75–85

    Article  Google Scholar 

  • Boumans L, Fraters D, van Drecht G (2004) Nitrate leaching by atmospheric N deposition to upper groundwater in the sandy regions of the Netherlands in 1990. Environ Monit Assess 93:1–15

    Article  CAS  Google Scholar 

  • Boumediene M, Achour D (2004) Denitrification of the underground waters by specific resin exchange of ion. Desalination 168:187–194

    Article  CAS  Google Scholar 

  • Bovolo CI, Parkin G, Sophocleous M (2009) Groundwater resources, climate and vulnerability. Environl Res Lett 4(3):1–12

    Google Scholar 

  • Brennan RA, Sanford RA, Werth CJ (2006a) Biodegradation of tetrachloroethene by chitin fermentation products in a continuous flow column system. J Environ Eng-ASCE 132:664–673

    Article  CAS  Google Scholar 

  • Brennan RA, Sanford RA, Werth CJ (2006b) Chitin and corncobs as electron donor sources for the reductive dechlorination of tetrachloroethene. Water Res 40:2125–2134

    Article  CAS  Google Scholar 

  • Campos JL, Carvalho S, Portela R, Mosquera-Corral A, Méndez R (2008) Kinetics of denitrification using sulphur compounds: effects of S/N ratio, endogenous and exogenous compounds. Bioresour Technol 99:1293–1299

    Article  CAS  Google Scholar 

  • Chabani M, Bensmaili A (2005) Kinetic modelling of the retention of nitrates by Amberlite IRA 410. Desalination 185:509–515

    Article  CAS  Google Scholar 

  • Chang C, Tseng S, Huang H (1999) Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment. Bioresour Technol 69:53–58

    Article  CAS  Google Scholar 

  • Chen JY, Taniguchi M, Liu GQ, Miyaoka K, Onodera S-i, Tokunaga T, Fukushima Y (2007) Nitrate pollution of groundwater in the Yellow River delta, China. Hydrogeol J 15:1605–1614

    Article  CAS  Google Scholar 

  • Cheng IF, Muftikian R, Fernando Q, Korte N (1997) Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35:2689–2695

    Article  CAS  Google Scholar 

  • Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311

    Article  CAS  Google Scholar 

  • Choe SH, Ljestrand HM, Khim J (2004) Nitrate reduction by zero-valent iron under different pH regimes. Appl Geochem 19:335–342

    Article  CAS  Google Scholar 

  • Costa JL, Massone H, Martínez D, Suero EE, Vidal CM, Bedmar F (2002) Nitrate contamination of a rural aquifer and accumulation in the unsaturated zone. Agr Water Manag 57:33–47

    Article  Google Scholar 

  • Daniels L, Belay N, Rajagopal BS, Weimer PJ (1987) Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237:509–511

    Article  CAS  Google Scholar 

  • Della Rocca C, Belgiorno V, Meric S (2005) Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration post-treatment. Water SA 31:229–236

    CAS  Google Scholar 

  • Della Rocca C, Belgiorno V, Meric S (2006) An heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochem 41:1022–1028

    Article  CAS  Google Scholar 

  • Della Rocca C, Belgiorno V, Meriç S (2007a) Overview of in situ applicable nitrate removal processes. Desalination 204:46–62

    Article  CAS  Google Scholar 

  • Della Rocca C, Belgiorno V, Meric S (2007b) Heterotrophic/autotrophic denitrification (HAD) of drinking water: prospective use for permeable reactive barrier. Desalination 210:194–204

    Article  CAS  Google Scholar 

  • Demiral H, Gündüzoğlu G (2010) Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresour Technol 101:1675–1680

    Article  CAS  Google Scholar 

  • Deng DJ (2000) Progress of gastric cancer etiology: N-nitrosamides in the 1990s. World J Gastroentero 6:613–618

    Google Scholar 

  • Devlin JF, Eedy R, Butler BJ (2000) The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer. J Contam Hydrol 46:81–97

    Article  CAS  Google Scholar 

  • Dong J, Zhao Y, Zhang W, Hong M (2009) Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater. J Hazard Mater 161:224–230

    Article  CAS  Google Scholar 

  • Eisentraeger A, Klag P, Vansbotter B, Heymann E, Dott W (2001) Denitrification of groundwater with methane as sole hydrogen donor. Water Res 35:2261–2267

    Article  CAS  Google Scholar 

  • Elefsiniotis P, Wareham DG (2007) Utilization patterns of volatile fatty acids in the denitrification reaction. Enzyme Microb Technol 41:92–97

    Article  CAS  Google Scholar 

  • Elmidaoui A, Elhannouni F, Taky M, Chay L, Elabbassi H, Hafsi M, Largeteau D (2002) Optimization of nitrate removal operation from ground water by electrodialysis. Sep Purif Technol 29:235–244

    Article  CAS  Google Scholar 

  • Ergas SJ, Reuss AF (2001) Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor. J Water Supply: Res Technol-AQUA 50:161–171

    CAS  Google Scholar 

  • Fan AM, Steinberg VE (1996) Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul Toxicol Pharm 23:35–43

    Article  CAS  Google Scholar 

  • Fernández-Nava Y, Marañón E, Soons J, Castrillón L (2010) Denitrification of high nitrate concentration wastewater using alternative carbon sources. J Hazard Mater 173:682–688

    Article  CAS  Google Scholar 

  • Gao W, Guan N, Chen J, Guan X, Jin R, Zeng H, Liu Z, Zhang F (2003) Titania supported Pd-Cu bimetallic catalyst for the reduction of nitrate in drinking water. Appl Catal B: Environ 46(2):341–351

    Article  CAS  Google Scholar 

  • Gavaskar AR (1999) Design and construction techniques for permeable reactive barriers. J Hazard Mater 68:41–71

    Article  CAS  Google Scholar 

  • Ghafari S, Hasan M, Aroua MK (2008) Bio-electrochemical removal of nitrate from water and wastewater—a review. Bioresour Technol 99:3965–3974

    Article  CAS  Google Scholar 

  • Gómez MA, González-López J, Hontoria-García E (2000) Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J Hazard Mater 80:69–80

    Article  Google Scholar 

  • Greenan CM, Moorman TB, Kaspar TC, Parkin TB, Jaynes DB (2006) Comparing carbon substrates for denitrification of subsurface drainage water. J Environ Qual 35:824–829

    Article  CAS  Google Scholar 

  • Gu BH, Watson DB, Wu LY, Phillips DH, White DC, Zhou J (2002) Microbiological characteristics in a zero-valent iron reactive barrier. Environ Monit Assess 77:293–309

    Article  Google Scholar 

  • Guan H, Bestland E, Zhu C, Zhu H, Albertsdottir D, Hutson J, Simmons CT, Ginic-Markovic M, Tao X, Ellis AV (2010) Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. J Hazard Mater 183(1–3):616–621

    Article  CAS  Google Scholar 

  • Haugen KS, Semmens MJ, Novak PJ (2002) A novel in situ technology for the treatment of nitrate contaminated groundwater. Water Res 36:3497–3506

    Article  CAS  Google Scholar 

  • Hu K, Huang Y, Li H, Li B, Chen D, White RE (2005) Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China plain. Environ Int 31:896–903

    Article  CAS  Google Scholar 

  • Huang YH, Zhang TC (2004) Effects of low pH on nitrate reduction by iron powder. Water Res 38:2631–2642

    Article  CAS  Google Scholar 

  • Huang CP, Wang HW, Chiu PC (1998) Nitrate reduction by metallic iron. Water Res 32:2257–2264

    Article  CAS  Google Scholar 

  • Hudak PF (2000) Regional trends in nitrate content of Texas groundwater. J Hydrol 228:37–47

    Article  CAS  Google Scholar 

  • Hunter WJ (2001) Use of vegetable oil in a pilot-scale denitrifying barrier. J Contam Hydrol 53:119–131

    Article  CAS  Google Scholar 

  • ITRC (2005) Permeable reactive barriers: lessons learned/new directions. Technical/Regulatory Guidelines, Washington, DC

    Google Scholar 

  • Kaçaroğlu F, Günay G (1997) Groundwater nitrate pollution in an alluvium aquifer, Eskisehir urban area and its vicinity, Turkey. Environ Geol 31:178–184

    Article  Google Scholar 

  • Karanasios KA, Vasiliadou IA, Pavlou S, Vayenasa DV (2010) Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180:20–37

    Article  CAS  Google Scholar 

  • Khan IA, Spalding RF (2004) Enhanced in situ denitrification for a municipal well. Water Res 38:3382–3388

    Article  CAS  Google Scholar 

  • Kielemoes J, De Boever P, Verstraete W (2000) Influence of denitrification on the corrosion of iron and stainless steel powder. Environ Sci Technol 34:663–671

    Article  CAS  Google Scholar 

  • Kim YS, Nakano K, Lee TJ, Kanchanatawee S, Matsumura M (2002) On-site nitrate removal of groundwater by an immobilized psychrophilic denitrifier using soluble starch as a carbon source. J Biosci Bioeng 93:303–308

    CAS  Google Scholar 

  • Kim H, Seagren EA, Davis AP (2003) Engineered bioretention for removal of nitrate from stormwater runoff. Water Environ Res 75:355–367

    Article  CAS  Google Scholar 

  • Knowles R (2005) Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecol Eng 24:441–446

    Article  Google Scholar 

  • Kumazawa K (2002) Nitrogen fertilization and nitrate pollution in groundwater in Japan: present status and measures for sustainable agriculture. Nutr Cycl Agroecosys 63:129–137

    Article  CAS  Google Scholar 

  • Lee K, Rittmann BE (2002) Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res 36:2040–2052

    Article  CAS  Google Scholar 

  • Lee JW, Lee KH, Park KY, Maeng SK (2010) Hydrogenotrophic denitrification in a packed bed reactor: effects of hydrogen-to-water flow rate ratio. Bioresour Technol 101:3940–3946

    Google Scholar 

  • Liao C-H, Kang S-F, Hsu Y-W (2003) Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide. Water Res 37:4109–4118

    Article  CAS  Google Scholar 

  • Liu H, Jiang W, Wan D, Qu J (2009) Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water. J Hazard Mater 169:23–28

    Article  CAS  Google Scholar 

  • Luk GK, Au-Yeung WC (2002) Experimental investigation on the chemical reduction of nitrate from groundwater. Adv Environ Res 6:441–453

    Article  CAS  Google Scholar 

  • Matĕjů V, Čižinská S, Krejěí J, Janoch T (1992) Biological water denitrification—a review. Enzyme Microb Technol 14:170–183

    Article  Google Scholar 

  • Menkouchi Sahli MA, Annouar S, Mountadar M, Soufiane A, Elmidaouia A (2008) Nitrate removal of brackish underground water by chemical adsorption and by electrodialysis. Desalination 227:327–333

    Article  CAS  Google Scholar 

  • Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T (2004) Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour Technol 95:255–257

    Article  CAS  Google Scholar 

  • Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41:2726–2738

    Article  CAS  Google Scholar 

  • Moon HS, Chang SW, Nam K, Choe J, Kim JY (2006) Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification. Environ Pollut 144:802–807

    Article  CAS  Google Scholar 

  • Moon HS, Shin DY, Nam K, Kim JY (2008) A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier. Chemosphere 73:723–728

    Article  CAS  Google Scholar 

  • Moreno B, Gómez MA, González-López J, Hontoria E (2005) Inoculation of a submerged filter for biological denitrification of nitrate polluted groundwater: a comparative study. J Hazard Mater 117:141–147

    Article  CAS  Google Scholar 

  • Nolan BT (2001) Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States. Ground Water 39:290–299

    Article  CAS  Google Scholar 

  • Nolan BT, Hitt KJ (2006) Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States. Environ Sci Technol 40:7834–7840

    Article  CAS  Google Scholar 

  • Öztürk N, Bektas TE (2004) Nitrate removal from aqueous solution by adsorption onto various materials. J Hazard Mater 112:155–162

    Article  CAS  Google Scholar 

  • Peyton BM (1996) Improved biomass distribution using pulsed injections of electron donor and acceptor. Water Res 30:756–758

    Article  CAS  Google Scholar 

  • Phillips DH, Gu B, Watson DB, Lee SY (2000) Performance evaluation of a zerovalent iron reactive barrier: mineralogical characteristics. Environ Sci Technol 34:4169–4176

    Article  CAS  Google Scholar 

  • Prüsse U, Vorlop K-D (2001) Supported bimetallic palladium catalysts for water-phase nitrate reduction. J Mol Catal A: Chem 173:313–328

    Article  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Sinninghe Damsté JS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  Google Scholar 

  • Rajapakse JP, Scutt JE (1999) Denitrification with natural gas and various new growth media. Wat Res 33(18):3723–3734

    Article  CAS  Google Scholar 

  • Rao NS (2006) Nitrate pollution and its distribution in the groundwater of Srikakulam district, Andhra Pradesh, India. Environ Geol 51:631–645

    Article  CAS  Google Scholar 

  • Rezaee A, Godini H, Jorfi S (2010) Nitrate removal from aqueous solution using MgCl2 impregnated activated carbon. Environ Eng Manag J 9:449–452

    CAS  Google Scholar 

  • Rivett MO, Bussb SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232

    Article  CAS  Google Scholar 

  • Robertson WD, Cherry JA (1995) In situ denitrification of septic-system nitrate using reactive porous media barriers: field trials. Ground Water 33(1):99–111

    Article  CAS  Google Scholar 

  • Robertson WD, Blowes DW, Ptacek CJ, Cherry JA (2000) Long-term performance of in situ reactive barriers for nitrate remediation. Ground Water 38:689–695

    Article  CAS  Google Scholar 

  • Robertson WD, Vogan JL, Lombardo PS (2008) Nitrate removal rates in a 15-year-old permeable reactive barrier treating septic system nitrate. Ground Water Monit Remediat 28:65–72

    CAS  Google Scholar 

  • Robinson-Lora MA, Brennan RA (2009) The use of crab-shell chitin for biological denitrification: batch and column tests. Bioresour Technol 100:534–541

    Article  CAS  Google Scholar 

  • Rodríguez-Maroto JM, Garcia-Herruzo F, Garcia-Rubio A, Sampaio LA (2009) Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere 74:804–809

    Article  CAS  Google Scholar 

  • Ruangchainikom C, Liao CH, Anotai J, Lee M-T (2006) Characteristics of nitrate reduction by zero-valent iron powder in the recirculated and CO2-bubbled system. Water Res 40:195–204

    Article  CAS  Google Scholar 

  • Ruckart PZ, Henderson AK, Black ML, Flanders WD (2008) Are nitrate levels in groundwater stable over time? J Expo Sci Environ Epidemiol 18:129–133

    Article  CAS  Google Scholar 

  • Salameh E, Alawi M, Batarseh M, Jiries A (2002) Determination of trihalomethanes and the ionic composition of groundwater at Amman City, Jordan. Hydrogeol J 10:332–339

    Article  CAS  Google Scholar 

  • Saliling WJB, Westerman PW, Losordo TM (2007) Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations. Aquacult Eng 37:222–233

    Article  Google Scholar 

  • Salvestrin H, Hagare P (2009) Removal of nitrates from groundwater in remote indigenous settings in arid Central Australia. Desalin Water Treat 11:151–156

    Article  CAS  Google Scholar 

  • Sato Y, Murayama K, Nakai T, Takahashi N (1995) Nitric acid adsorption by a phosphonic acid ester type adsorbent. Water Res 29:1267–1271

    Article  CAS  Google Scholar 

  • Schipper LA, Vojvodić-Vuković M (1998) Nitrate removal from groundwater using a denitrification wall amended with sawdust: field trial. J Environ Qual 27:664–668

    Article  CAS  Google Scholar 

  • Schipper LA, Vojvodić-Vuković M (2000) Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecol Eng 14:269–278

    Article  Google Scholar 

  • Schipper LA, Vojvodić-Vuković M (2001) Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall. Water Res 35:3473–3477

    Article  CAS  Google Scholar 

  • Schipper LA, Barkle GF, Hadfield JC, Vojvodić-Vuković M, Burgess CP (2004) Hydraulic constraints on the performance of a groundwater denitrification wall for nitrate removal from shallow groundwater. J Contam Hydrol 69:263–279

    Article  CAS  Google Scholar 

  • Schipper LA, Barkle GF, Vojvodić-Vuković M (2005) Maximum rates of nitrate removal in a denitrification wall. J Environ Qual 34:1270–1276

    Article  CAS  Google Scholar 

  • Shin KH, Cha DK (2008) Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72:257–262

    Article  CAS  Google Scholar 

  • Siantar DP, Schreier CG, Chou CS, Reinhard M (1996) Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts. Water Res 30:2315–2322

    Article  CAS  Google Scholar 

  • Sierra-Alvarez R, Beristain-Cardoso R, Salazar M, Gómez J, Razo-Flores E, Field JA (2007) Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Res 41:1253–1262

    Article  CAS  Google Scholar 

  • Smith RL, Ceazan ML, Brooks MH (1994) Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl Environ Microbiol 60:1949–1955

    CAS  Google Scholar 

  • Smith RL, Miller DN, Brooks MH, Widdowson MA, Killingstad MW (2001) In situ stimulation of groundwater denitrification with formate to remediate nitrate contamination. Environ Sci Technol 35:196–203

    Article  CAS  Google Scholar 

  • Soares MIM (2000) Biological denitrification of groundwater. Water Air Soil Pollut 123:183–193

    Article  CAS  Google Scholar 

  • Soares MIM, Abeliovich A (1998) Wheat straw as substrate for water denitrification. Water Res 32:3790–3794

    Article  CAS  Google Scholar 

  • Spalding RF, Exner ME (1993) Occurrence of nitrate in groundwater—a review. J Environ Qual 22:392–402

    Article  CAS  Google Scholar 

  • Starr RC, Gillham RW (1993) Denitrification and organic carbon availability in two aquifers. Ground Water 31:934–947

    Article  CAS  Google Scholar 

  • Steindorf K, Schlehofer B, Becher H, Hornig G, Wahrendorf J (1994) Nitrate in drinking-water. A case-control study on primary brain tumors with an embedded drinking water survey in Germany. Int J Epidemiol 23:451–457

    Article  CAS  Google Scholar 

  • Su C, Puls RW (2004) Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environ Sci Technol 38:2715–2720

    Article  CAS  Google Scholar 

  • Su C, Puls RW (2007) Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: implications for groundwater nitrate remediation using permeable reactive barriers. Chemosphere 67:1653–1662

    Article  CAS  Google Scholar 

  • Thalasso F, Vallecillo A, García-Encina P, Fernández-Polanco F (1997) The use of methane as a sole carbon source for wastewater denitrification. Water Res 31:55–60

    Article  CAS  Google Scholar 

  • Thiruvenkatachari R, Vigneswaran S, Naidu R (2008) Permeable reactive barrier for groundwater remediation. J Ind Eng Chem 14:145–156

    Article  CAS  Google Scholar 

  • Till BA, Weathers LJ, Alvarez PJJ (1998) Fe(0)-supported autotrophic denitrification. Environ Sci Technol 32:634–639

    Article  CAS  Google Scholar 

  • van Rijn J, Tal Y, Schreier HJ (2006) Denitrification in recirculating systems: theory and applications. Aquacult Eng 34:364–376

    Article  Google Scholar 

  • Volokita M, Belkin S, Abeliovich A, Soares MIM (1996a) Biological denitrification of drinking water using newspaper. Water Res 30:965–971

    Article  CAS  Google Scholar 

  • Volokita M, Abeliovich A, Soares MIM (1996b) Denitrification of groundwater using cotton as energy source. Wat Sci Technol 34(1–2):379–385

    CAS  Google Scholar 

  • Wakida FT, Lerner DN (2005) Non-agricultural sources of groundwater nitrate: a review and case study. Water Res 39:3–16

    Article  CAS  Google Scholar 

  • Wang Q, Feng C, Zhao Y, Hao C (2009) Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor. Bioresour Technol 100:2223–2227

    Article  CAS  Google Scholar 

  • Ward MH, deKok TM, Levallois P, Brender J, Gulis G, Nolan BT, VanDerslice J (2005) Workgroup report: drinking-water nitrate and health-recent findings and research needs. Environ Health Perspect 113:1607–1614

    Article  CAS  Google Scholar 

  • Westerhoff P, James J (2003) Nitrate removal in zero-valent iron packed columns. Water Res 37:1818–1830

    Article  CAS  Google Scholar 

  • Weyer PJ, Cerhan JR, Kross BC, Hallberg GR, Kantamneni J, Breuer G, Jones MP, Zheng W, Lynch CF (2001) Municipal drinking water nitrate level and cancer risk in older women: the Iowa women’s health study. Epidemiology 12:327–338

    Article  CAS  Google Scholar 

  • WHO (2008) Guidelines for drinking water quality (3rd ed.)

    Google Scholar 

  • Xi Y, Mallavarapu M, Naidu R (2010) Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl Clay Sci 48:92–96

    Article  CAS  Google Scholar 

  • Yang GCC, Lee HL (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res 39:884–894

    Article  CAS  Google Scholar 

  • Zhang TC, Lampe DG (1999) Sulfur: limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: batch experiments. Water Res 33:599–608

    Article  CAS  Google Scholar 

  • Zhang WL, Tian ZX, Zhang N, Li XQ (1996) Nitrate pollution of groundwater in northern China. Agr Ecosyst Environ 59:223–231

    Article  CAS  Google Scholar 

  • Zhu ZL, Chen DL (2002) Nitrogen fertilizer use in China-contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosys 63:117–127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Liu, F., Huang, G., Fallowfield, H., Guan, H., Zhu, L., Hu, H. (2014). General Introduction. In: Study on Heterotrophic-Autotrophic Denitrification Permeable Reactive Barriers (HAD PRBs) for In Situ Groundwater Remediation. SpringerBriefs in Water Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38154-6_1

Download citation

Publish with us

Policies and ethics