Skip to main content

Are Karrikin Signaling Mechanisms Relevant to Strigolactone Perception?

Abstract

Karrikins found in smoke and the synthetic strigolactone GR24 induce similar developmental effects during early stages of Arabidopsis thaliana growth, including promotion of seed germination. Responses to karrikins and strigolactones are distinct at other growth stages, such as during the repression of axillary shoot growth. The F-box protein MAX2 is required for both signalling pathways. Two α-/β-hydrolase superfamily proteins, KAI2 and D14, control subsets of MAX2-regulated development. KAI2 is required for seed germination responses to karrikin and strigolactone treatments, while D14 mediates strigolactone-specific control of shoot branching. It is hypothesized that an orthologous pathway controls host-specific germination of the obligate parasitic Orobanchaceae.

Keywords

  • Seed Germination
  • Sesquiterpene Lactone
  • Germination Response
  • Parasitic Weed
  • Germination Stimulant

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-38146-1_12
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-38146-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 12.1

References

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    PubMed  CrossRef  CAS  Google Scholar 

  • Chiwocha SDS, Dixon KW, Flematti GR, Ghisalberti EL, Merritt DJ, Nelson DC, Riseborough J-AM, Smith SM, Stevens JC (2009) Karrikins: a new family of plant growth regulators in smoke. Plant Sci 177:252–256

    CrossRef  CAS  Google Scholar 

  • De Lange JH, Boucher C (1990) Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S Afr J Bot 56:700–703

    Google Scholar 

  • Dixon KW, Merritt DJ, Flematti GR, Ghisalberti EL (2009) Karrikinolide – a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration, and agriculture. Acta Hortic 813:155–170

    CAS  Google Scholar 

  • Fernandez-Aparicio M, Rubiales D, Bandaranayake PC, Yoder JI, Westwood JH (2011a) Transformation and regeneration of the holoparasitic plant Phelipanche aegyptiaca. Plant Methods 7:36

    PubMed  CrossRef  CAS  Google Scholar 

  • Fernandez-Aparicio M, Yoneyama K, Rubiales D (2011b) The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci Res 21:55–61

    CrossRef  Google Scholar 

  • Fischer NH, Weidenhamer JD, Bradow JM (1989) Dihydroparthenolide and other sesquiterpene lactones stimulate witchweed germination. Phytochemistry 28:2315–2317

    CrossRef  CAS  Google Scholar 

  • Fischer NH, Weidenhamer JD, Riopel JL, Quijano L, Menelaou MA (1990) Stimulation of witchweed germination by sesquiterpene lactones: a structure-activity study. Phytochemistry 29:2479–2483

    CrossRef  CAS  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305:977

    PubMed  CrossRef  CAS  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2009) Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. J Agric Food Chem 57:9475–9480

    PubMed  CrossRef  CAS  Google Scholar 

  • Gao Z, Qian Q, Liu X, Yan M, Feng Q, Dong G, Liu J, Han B (2009) Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol 71:265–276

    PubMed  CrossRef  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    PubMed  CrossRef  CAS  Google Scholar 

  • Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    PubMed  CrossRef  CAS  Google Scholar 

  • Ishida JK, Yoshida S, Ito M, Namba S, Shirasu K (2011) Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLoS One 6(10):e25802

    PubMed  CrossRef  CAS  Google Scholar 

  • Joel DM, Chaudhuri SK, Plakhine D, Ziadna H, Steffens JC (2011) Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry 72:624–634

    PubMed  CrossRef  CAS  Google Scholar 

  • Keeley JE, Fotheringham CJ (1998) Smoke-induced seed germination in California chaparral. Ecology 79:2320–2336

    CrossRef  Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signalling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    PubMed  CrossRef  CAS  Google Scholar 

  • Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, Luan W, He Z, Sun Z (2009) Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230:649–658

    PubMed  CrossRef  CAS  Google Scholar 

  • Moreira B, Tormo J, Estrelles E, Pausas JG (2010) Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann Bot 105:627–635

    PubMed  CrossRef  CAS  Google Scholar 

  • Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, Smith SM (2009) Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol 149:863–873

    PubMed  CrossRef  CAS  Google Scholar 

  • Nelson DC, Flematti GR, Riseborough JA, Ghisalberti EL, Dixon KW, Smith SM (2010) Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:7095–7100

    PubMed  CrossRef  CAS  Google Scholar 

  • Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signalling in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:8897–8902

    PubMed  CrossRef  CAS  Google Scholar 

  • Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107–130

    PubMed  CrossRef  CAS  Google Scholar 

  • Roche S, Koch JM, Dixon KW (1997) Smoke enhanced seed germination for mine rehabilitation in the southwest of Western Australia. Restor Ecol 5:191–203

    CrossRef  Google Scholar 

  • Shen H, Luong P, Huq E (2007) The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145:1471–1483

    PubMed  CrossRef  CAS  Google Scholar 

  • Shen H, Zhu L, Bu Q, Huq E (2012) MAX2 affects multiple hormones to promote photomorphogenesis. Mol Plant 5:750–762

    PubMed  CrossRef  Google Scholar 

  • Somers DE, Fujiwara S (2009) Thinking outside the F-box: novel ligands for novel receptors. Trends Plant Sci 14:206–213

    PubMed  CrossRef  CAS  Google Scholar 

  • Stevens JC, Merritt DJ, Flematti GR, Ghisalberti EL, Dixon KW (2007) Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. Plant Soil 298:113–124

    CrossRef  CAS  Google Scholar 

  • Stirnberg P, van De Sande K, Leyser HM (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    PubMed  CAS  Google Scholar 

  • Sun TP (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signalling module in plants. Curr Biol 21:338–345

    CrossRef  Google Scholar 

  • Todorovic SLA, Zivkovic S, Giba Z, Grubisic D, Misic D (2007) Basic seed germination characteristics of the endemic species Nepeta rtanjensis (Lamiaceae). Plant Species Biol 22:205–210

    CrossRef  Google Scholar 

  • Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y (2012) Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117

    PubMed  CrossRef  CAS  Google Scholar 

  • Tomilov A, Tomilova N, Yoder JI (2007) Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta 225:1059–1071

    PubMed  CrossRef  CAS  Google Scholar 

  • Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749

    PubMed  CrossRef  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    PubMed  CrossRef  CAS  Google Scholar 

  • van Staden J, Jager AK, Light ME, Burger BV (2004) Isolation of the major germination cue from plant-derived smoke. S Afr J Bot 70:654–659

    Google Scholar 

  • Waters MT, Smith SM, Nelson DC (2011) Smoke signals and seed dormancy: where next for MAX2? Plant Signal Behav 6:1418–1422

    PubMed  CrossRef  CAS  Google Scholar 

  • Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–1295

    PubMed  CrossRef  CAS  Google Scholar 

  • Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235

    PubMed  CrossRef  CAS  Google Scholar 

  • Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nelson, D.C. (2013). Are Karrikin Signaling Mechanisms Relevant to Strigolactone Perception?. In: Joel, D., Gressel, J., Musselman, L. (eds) Parasitic Orobanchaceae. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38146-1_12

Download citation