Plant Diversity and Its Relevance for the Provision of Ecosystem Services

  • Jürgen Homeier
  • Florian A. Werner
  • Julia Gawlik
  • Thorsten Peters
  • Karl-Heinz J. Diertl
  • Michael Richter
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 221)

Abstract

This chapter summarizes how plant species composition and richness in the Andean montane forests of southern Ecuador are driven by environmental heterogeneity. Natural vegetation dynamics of these highly diverse forests is dramatically affected by the current human land use practices with the consequence of an immense loss of species richness that most likely results in a drastic deterioration of ecosystem services on the landscape level. Basic knowledge about ecosystem functioning is still scarce for the region, and the study of plant functional traits should receive increasing attention, since these traits are the main attribute by which plants influence ecosystem functioning and thus ecosystem services.

References

  1. Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nkashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156PubMedCrossRefGoogle Scholar
  2. Bush MB (2002) Distributional change and conservation on the Andean flank: a paleoecological perspective. Glob Ecol Biogeogr 11:463–473CrossRefGoogle Scholar
  3. Bussmann RW, Wilcke W, Richter M (2008) Landslides as important disturbance regimes – causes and regeneration. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, vol 198, Ecological studies. Springer, Berlin, pp 319–330CrossRefGoogle Scholar
  4. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087CrossRefGoogle Scholar
  5. de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cirpriotti P, Feld CK, Hering D, Martins da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893CrossRefGoogle Scholar
  6. Diaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689PubMedCrossRefGoogle Scholar
  7. Diertl K-HJ (2010) Pflanzendiversität entlang eines Höhengradienten in den Anden Südecuadors. Dissertation thesis, Universität Erlangen-Nuremberg, 277 p. (http://www.opus.ub.uni-erlangen.de/opus/volltexte/2011/2234/pdf/KARL_HEINZDIERTLDISSERTATION.PDF)
  8. FAO (2005) State of the world’s forests 2005. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  9. Gascon C, Lovejoy TE, Bierregaard RO, Malcolm JR, Stouffer PC, Vasconcelos HL, Laurance WF, Zimmerman B, Tocher M, Borges S (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229CrossRefGoogle Scholar
  10. Göttlicher D, Obregon A, Homeier J, Rollenbeck R, Nauss T, Bendix J (2009) Landcover classification in the Andes of southern Ecuador using ETM + and MODIS data as a basis for multi-scale SVAT modeling. Int J Remote Sens 30:1867–1886CrossRefGoogle Scholar
  11. Gove AD, Majer JC, Rico-Gray V (2009) Ant assemblages in isolated trees are more sensitive to species loss and replacement than their woodland counterparts. Basic Appl Ecol 10:185–197CrossRefGoogle Scholar
  12. Hietz P (2005) Conservation of vascular epiphyte diversity in a Mexican coffee plantation. Conserv Biol 19:391–399CrossRefGoogle Scholar
  13. Homeier J (2008) The influence of topography on forest structure and regeneration dynamics in an Ecuadorian montane forest. In: Gradstein SR, Homeier J, Gansert D (eds) The tropical mountain forest – patterns and processes in a biodiversity hotspot, vol 2, Biodiversity and ecology series. Göttingen Centre for Biodiversity and Ecology, Göttingen, pp 97–107Google Scholar
  14. Homeier J, Breckle S-W (2008) Gap-dynamics in a tropical lower montane forest in South Ecuador. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, vol 198, Ecological studies. Springer, Berlin, pp 311–317CrossRefGoogle Scholar
  15. Homeier J, Werner FA (2007) Spermatophyta checklist Reserva Biológica San Francisco (Prov. Zamora-Chinchipe, S-Ecuador). In: Liede-Schumann S, Breckle S-W (eds) Provisional checklists of flora and fauna of the San Francisco valley and its surroundings, vol 4, Ecotropical Monographs. Estación Científica San Francisco, Southern Ecuador, pp 15–58Google Scholar
  16. Homeier J, Werner FA, Gradstein SR, Breckle S-W, Richter M (2008) Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, vol 198, Ecological studies. Springer, Berlin, pp 87–100CrossRefGoogle Scholar
  17. Homeier J, Breckle S-W, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rainforest. Biotropica 42:140–148CrossRefGoogle Scholar
  18. Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–203PubMedCrossRefGoogle Scholar
  19. Jost L (2006) Entropy and diversity. Oikos 113:363–375CrossRefGoogle Scholar
  20. Köster N, Friedrich K, Nieder N, Barthlott W (2009) Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conserv Biol 23:911–919PubMedCrossRefGoogle Scholar
  21. Larrea M, Werner FA (2010) Response of vascular epiphyte diversity to different land-use intensities in a neotropical montane wet forest. For Ecol Manage 260:1950–1955CrossRefGoogle Scholar
  22. Laurance WF (2004) Forest-climate interactions in fragmented tropical landscapes. Philos Trans R Soc Lond B Biol Sci 359:345–352PubMedCrossRefGoogle Scholar
  23. Liede-Schumann S, Breckle S-W (eds) (2007) Provisional Checklists of Flora and Fauna of the San Francisco valley and its surroundings, vol 4, Ecotropical Monographs. Estación Científica San Francisco, Prov. Zamora-Chinchipe, Southern EcuadorGoogle Scholar
  24. Lyons KG, Brigham CA, Traut BH, Schwartz MW (2005) Rare species and ecosystem functioning. Conserv Biol 19:1019–1024CrossRefGoogle Scholar
  25. Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27:19–26PubMedCrossRefGoogle Scholar
  26. Manning AD, Fischer J, Lindenmayer DB (2006) Scattered trees are keystone structures – Implications for conservation. Biol Conserv 132:311–321CrossRefGoogle Scholar
  27. Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DCGoogle Scholar
  28. Mosandl R, Günter S, Stimm B, Weber M (2008) Ecuador suffers the highest deforestation rate in South America. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, vol 198, Ecological studies. Springer, Heidelberg, pp 37–40CrossRefGoogle Scholar
  29. Muenchow J, Brenning A, Richter M (2012) Geomorphic process rates of landslides along a humidity gradient in the tropical Andes. Geomorphology 139(140):271–284CrossRefGoogle Scholar
  30. Nöske N (2005) Effekte anthropogener Störung auf die Diversität kryptogamischer Epiphyten (Flechten, Moose) in einem Bergregenwald in Südecuador. Dissertation, Universität Göttingen, 137 ppGoogle Scholar
  31. Nöske NM, Hilt N, Werner FA, Brehm G, Fiedler K, Sipman HJM, Gradstein SR (2008) Disturbance effects on epiphytes and moths in a montane forest in Ecuador. Basic Appl Ecol 9:4–12CrossRefGoogle Scholar
  32. Ohl C, Bussmann R (2004) Recolonisation of natural landslides in tropical mountain forests of Southern Ecuador. Feddes Repert 115:248–264CrossRefGoogle Scholar
  33. Peters T, Diertl K-H, Gawlik J, Rankl M, Richter M (2010) Vascular plant diversity in natural and anthropogenic ecosystems in the Andes of southern Ecuador. Mt Res Dev 30:344–352CrossRefGoogle Scholar
  34. Poltz K, Zotz G (2011) Vascular epiphytes on isolated pasture trees along a rainfall gradient in the lowlands of Panama. Biotropica 43:165–172CrossRefGoogle Scholar
  35. Portela R, Rademacher I (2001) A dynamic model of patterns of deforestation and their effect on the ability of the Brazilian Amazonia to provide ecosystem services. Ecol Modell 143:115–146CrossRefGoogle Scholar
  36. Restrepo C, Walker LR, Shiels AB, Bussmann R, Claessens L, Fisch S, Lozano P, Negi G, Paolini L, Poveda G, Ramos-Scharrón C, Richter M, Velázquez E (2009) Landsliding and its multiscale influence on mountainscapes. Bioscience 59:685–698CrossRefGoogle Scholar
  37. Roos K, Rollenbeck R, Peters T, Bendix J, Beck E (2010) Growth of tropical bracken (Pteridium arachnoideum): response to weather variations and burning. Invasive Plant Sci Manage 3:402–411CrossRefGoogle Scholar
  38. Takyu M, Aiba S-I, Kitayama K (2002) Effects of topography on tropical lower montane forests under different geological conditions on Mount Kinabalu, Borneo. Plant Ecol 159:35–49CrossRefGoogle Scholar
  39. TEEB (2009) TEEB climate issues update: the economics of ecosystems and biodiversity. September 2009Google Scholar
  40. Webb EL, Stanfield BJ, Jensen ML (1999) Effects of topography on rainforest tree community structure and diversity in American Samoa, and implications for frugivore and nectarivore populations. J Biogeogr 26:887–897CrossRefGoogle Scholar
  41. Werner FA (2011) Reduced growth and survival of vascular epiphytes on isolated remnant trees in a recent tropical montane forest clear-cut. Basic Appl Ecol 12:172–181CrossRefGoogle Scholar
  42. Werner FA, Gradstein SR (2008) Seedling establishment of vascular epiphytes on isolated and enclosed forest trees in an Andean landscape, Ecuador. Biodivers Conserv 17:3195–3207CrossRefGoogle Scholar
  43. Werner FA, Gradstein SR (2009) Diversity of dry forest epiphytes along a gradient of human disturbance in the tropical Andes. J Veg Sci 20:59–68CrossRefGoogle Scholar
  44. Werner FA, Homeier J, Gradstein SR (2005) Diversity of vascular epiphytes on isolated remnant trees in the montane forest belt of southern Ecuador. Ecotropica 11:21–40Google Scholar
  45. Werner FA, Köster N, Kessler M, Gradstein SR (2012) Is the resilience of epiphyte assemblages to human disturbance a function of local climate? Ecotropica 17:15–20Google Scholar
  46. Wolf JHD (2005) The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. For Ecol Manage 212:376–393CrossRefGoogle Scholar
  47. Wolf K, Veldkamp E, Homeier J, Martinson GO (2011) Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biogeochem Cycles 25, GB4009Google Scholar
  48. Zahawi RA, Augspurger CK (2006) Tropical forest restoration: tree islands as recruitment foci in degraded lands of Honduras. Ecol Appl 16:464–478PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jürgen Homeier
    • 1
  • Florian A. Werner
    • 2
  • Julia Gawlik
    • 3
  • Thorsten Peters
    • 3
  • Karl-Heinz J. Diertl
    • 3
  • Michael Richter
    • 3
  1. 1.Albrecht von Haller Institute of Plant SciencesUniversity of GöttingenGöttingenGermany
  2. 2.Institute of Biology and Environmental SciencesUniversity of OldenburgOldenburgGermany
  3. 3.Institute of GeographyUniversity of ErlangenErlangenGermany

Personalised recommendations