Diversity in Soil Fungi, Protists, and Microarthropods

  • Matthias C. Rillig
  • Tessa Camenzind
  • Julia Gawlik
  • Ingeborg Haug
  • Valentyna Krashevska
  • Mark Maraun
  • Dorothee Sandmann
  • Stefan Scheu
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 221)

Abstract

Current preserving services in the tropical mountain forest of Southern Ecuador are discussed, with a focus on arbuscular mycorrhizal (AM) fungi, microarthropods (oribatid mites), and protists (testate amoebae). Diversity patterns of AM fungi are described in a comparison of native forest with its anthropogenic replacement system of low plant diversity, while patterns of oribatid mites and testate amoebae are reported along an elevational gradient. Levels of AM fungal richness observed thus far were relatively high on both sites, but not unusually so. Belowground invertebrate richness did not approach that of aboveground invertebrates. Testate amoebae species numbers were relatively high overall, but did not follow a clear altitudinal gradient, in contrast to plant richness and oribatid mites. These results illustrate the complexity of the studied system in Ecuador with respect to the overall compartmentalization of diversity patterns.

References

  1. Aldrich-Wolfe L (2007) Distinct mycorrhizal communities on new and established hosts in a transitional tropical plant community. Ecology 88:559–566PubMedCrossRefGoogle Scholar
  2. Allen EB, Rincón E, Allen MF, Pérez-Jimenez A, Huante P (1998) Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in Mexico. Biotropica 30:261–274CrossRefGoogle Scholar
  3. Balogh J (1972) The oribatid genera of the world. Hungarian Natural History MuseumGoogle Scholar
  4. Balogh P (1988) Oribatid mites from Ecuador (Acari) 1. Acta Zool Hung 34:321–338Google Scholar
  5. Balogh J, Balogh P (1988) Oribatid mites of the neotropical region. ElsevierGoogle Scholar
  6. Balogh J, Balogh P (2002) Identification key to Oribatid mites of the Extra-Holarctic regions. Well-PressGoogle Scholar
  7. Balogh P, Gergocs V, Farkas E, Farkas P, Kocsis M, Hufnagel L (2008) Oribatid assamblages of tropical high mountains on some points of the Gondwana-Bridge – a case study. Appl Ecol Environ Res 6:127–158Google Scholar
  8. Bamforth SS (2007) Protozoa from aboveground and ground soils of a tropical rain forest in Puerto Rico. Pedobiologia 50:515–525CrossRefGoogle Scholar
  9. Bastias BA, Huang ZQ, Blumfield T, Xu Z, Cairney JWG (2006) Influence of repeated prescribed burning on the soil fungal community in an eastern Australian wet sclerophyll forest. Soil Biol Biochem 38:3492–3501CrossRefGoogle Scholar
  10. Beck E, Harting K, Roos K (2008a) Forest clearing by slash and burn. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 371–374Google Scholar
  11. Beck E, Makeschin F, Haubrich F, Richter M, Bendix J, Valerezo C (2008b) The ecosystem (Reserva Biológica San Francisco). In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 1–13Google Scholar
  12. Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 84:71–82CrossRefGoogle Scholar
  13. Bonnet L (1966) Le peuplement thecamoebien de quelques sols du Chili. Protistologica 2:113–140Google Scholar
  14. Bradford MA, Jones TH, Bardgett RD, Black HIJ, Boag B, Bonkowski M, Cook R, Eggers T, Gange AC, Grayston SJ, Kandeler E, McCaig AE, Newington JE, Prosser JI, Setälä H, Staddon PL, Tordoff GM, Tscherko D, Lawton JH (2002) Impacts of soil faunal community composition on model grassland ecosystems. Science 298:615–618PubMedCrossRefGoogle Scholar
  15. Brehm G, Homeier J, Fielder K (2003) Beta dieversity of geometrid moths (Lepidoptera: Geometridae) in an Andean montane rain forest. Divers Distrib 9:351–366CrossRefGoogle Scholar
  16. Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265CrossRefGoogle Scholar
  17. Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier, San DiegoGoogle Scholar
  18. Cuenca G, de Andrade Z, Escalante G (1998) Diversity of glomalean spores from natural, disturbed and revegetated communities growing on nutrient-poor tropical soils. Soil Biol Biochem 30:711–719CrossRefGoogle Scholar
  19. De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633PubMedCrossRefGoogle Scholar
  20. Fiedler, K, Brehm, G, Hilt, N, Süßenbach, D, Häuser, CL (2008) Variation of diversity patterns across moth families along a tropical altitudinal gradient. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 167–179Google Scholar
  21. Fischer CR, Janos DP, Perry DA, Linderman RG, Sollins P (1994) Mycorrhiza inoculum potentials in tropical secondary succession. Biotropica 26:369–377CrossRefGoogle Scholar
  22. Gavito ME, Pérez-Castillo D, González-Monterrubio CF, Vieyra-Hernández T, Martínez-Trujillo M (2008) High compatibility between arbuscular mycorrhizal fungal communities and seedlings of different land use types in a tropical dry ecosystem. Mycorrhiza 19:47–60PubMedCrossRefGoogle Scholar
  23. Göker M, García-Blázquez G, Voglmayr H, Tellería MT, Martín MP (2009) Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS One 29:e6319CrossRefGoogle Scholar
  24. Guadarrama P, Castillo-Argüero S, Ramos-Zapata JA, Camargo-Ricalde SL, Álvarez-Sánchez J (2008) Propagules of arbuscular mycorrhizal fungi in a secondary dry forest of Oaxaca. Mexico Rev Biol Trop 56:269–277Google Scholar
  25. Günter S, Gonzalez P, Alvarez G, Aguirre N, Palomeque X, Haubrich F, Weber M (2009) Determinants for successful reforestation of abandoned pastures in the Andes: soil conditions and vegetation cover. For Ecol Manage 258:81–91CrossRefGoogle Scholar
  26. Hackl E, Pfeffer M, Donat C, Bachmann G, Zechmeister-Boltenstern S (2005) Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol Biochem 37:661–671CrossRefGoogle Scholar
  27. Haug I, Wubet T, Weiß M, Aguirre N, Weber M, Günter S, Kottke I (2010) Species-rich but distinct arbuscular mycorrhizal communities in reforestation plots on degraded pastures and in neighboring pristine tropical mountain rain forest. Trop Ecol 51:125–148Google Scholar
  28. Heidemann K, Scheu S, Ruess L, Maraun M (2011) Molecular detection of nematode predation and scavenging in oribatid mites: laboratory and field experiments. Soil Biol Biochem 43:2229–2236CrossRefGoogle Scholar
  29. Homeier J, Werner FA (2007) Spermatopyta checklist – Reserva Biologica San Francisco (Prov. Zamora-Chinchipe, S. Ecuador). Ecotrop Monogr 4:15–58Google Scholar
  30. Illig J, Schatz H, Scheu S, Maraun M (2008) Decomposition and colonization by micro-arthropods of two litter types in a tropical montane rain forest in southern Ecuador. J Trop Ecol 24:1–11CrossRefGoogle Scholar
  31. Iost S, Makeschin F, Aiby M, Haubrich F (2008) Biotic soil activities. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 217–227Google Scholar
  32. Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12:56–64CrossRefGoogle Scholar
  33. Johnson NC, Wedin DA (1997) Soil carbon, nutrients, and mycorrhizae during conversion of dry tropical forest to grassland. Ecol Appl 7:171–182CrossRefGoogle Scholar
  34. Kempson D, Lloyd M, Ghelardi R (1963) A new extractor for woodland litter. Pedobiologia 3:1–21Google Scholar
  35. Kottke I, Haug I (2004) The significance of mycorrhizal diversity of trees in the tropical mountain forest of southern Ecuador. Lyonia 7:49–56Google Scholar
  36. Kounda-kiki C, Vaculik A, Ponge JF, Sarthough C (2004) Soil and arthopods in a developmental succession on the Nouragues inselberg (French Guiana). Biol Fertil Soils 40:119–127CrossRefGoogle Scholar
  37. Krashevska V, Bonkowski M, Maraun M, Scheu S (2007) Testate amoebae (protista) of an elevational gradient in the tropical mountain rain forest of Ecuador. Pedobiologia 51:319–331CrossRefGoogle Scholar
  38. Krashevska V, Maraun M, Ruess L, Scheu S (2010) Carbon and nutrient limitation of soil microorganisms and microbial grazers in a tropical montane rain forest. Oikos 119:1020–1028CrossRefGoogle Scholar
  39. Krashevska V, Maraun M, Scheu S (2012a) How does litter quality affect the community of soil protists (testate amoebae) of tropical montane rainforests? FEMS Microbiol Ecol 80:603–607PubMedCrossRefGoogle Scholar
  40. Krashevska V, Sandmann D, Maraun M, Scheu S (2012b) Consequences of exclusion of precipitation on microorganisms and microbial consumers in montane tropical rain forests. Oecologia 170:1067–1076PubMedCrossRefGoogle Scholar
  41. Kuptz D, Grams TEE, Günter S (2010) Light acclimation of four native tree species in felling gaps within a tropical mountain rainforest. Trees 24:117–127CrossRefGoogle Scholar
  42. Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349PubMedCrossRefGoogle Scholar
  43. Maldonado JD, Tainter FH, Skipper HD, Lacher TE (2000) Arbuscular mycorrhiza inoculum potential in natural and managed tropical montane soils in Costa Rica. Trop Agric 77:27–32Google Scholar
  44. Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari:oribatida) patterns, mechanisms and implications for future research. Ecography 23:374–383CrossRefGoogle Scholar
  45. Maraun M, Illig J, Sandmann D, Krashevska V, Norton RA, Scheu S (2008) Soil fauna. In: Gradients in a tropical mountain ecosystem of Ecuador. In Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 181–192Google Scholar
  46. Muthukumar T, Sha L, Yang X, Cao M, Tang J, Zheng Z (2003) Mycorrhiza of plants in different vegetation types in tropical ecosystems of Xishuangbanna, southwest China. Mycorrhiza 13:289–297PubMedCrossRefGoogle Scholar
  47. Niedbala W, Illig J (2007) Ptyctimous mites (Acari:Oribatida) from the Ecuadorian rainforest. J Nat Hist 41:771–777CrossRefGoogle Scholar
  48. Peters T, Diertl K-H, Gawlik J, Rankl M, Richter M (2010) Vascular plant diversity in natural and anthropogenic ecosystems in the Andes of southern Ecuador. Mt Res Dev 30:344–352CrossRefGoogle Scholar
  49. Picone C (2000) Diversity and abundance of arbuscular-mycorrhizal fungus spores in tropical forest and pasture. Biotropica 32:734–750CrossRefGoogle Scholar
  50. Plowman KP (1981) Distribution of Cryptostigmata and Mesostigmata (Acari) within the litter and soil layers of two subtropical forests. Austral J Ecol 6:365–374CrossRefGoogle Scholar
  51. Scheu S (2003) Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia 47:1–11CrossRefGoogle Scholar
  52. Scheu S, Theenhaus A, Jones TH (1999) Links between the detritivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development. Oecologia 119:541–551CrossRefGoogle Scholar
  53. Scheu S, Ruess L, Bonkowski M (2005) Interactions between microorganisms and soil micro- and mesofauna. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Soil biology, vol 3. Springer, Berlin, pp 253–275Google Scholar
  54. Scheu S, Illig J, Eissfeller V, Krashevska V, Sandmann D, Maraun M (2008) The soil fauna of a tropical mountain rainforest in southern Ecuador: structure and functioning. In: Gradstein SR, Homeier J, Gansert D (eds) The tropical mountain forest. Patterns and processes in a biodiversity hotspots. Biodiversity and ecology series, vol 2. Universitätsverlag Göttingen, pp 79–96Google Scholar
  55. Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36:1769–1774CrossRefGoogle Scholar
  56. Stürmer SL, Siqueira JO (2011) Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza 21:255–267PubMedCrossRefGoogle Scholar
  57. Van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091CrossRefGoogle Scholar
  58. Wanner M (1989) Zur Morphologie und Ökologie von Thekamöben (Protozoa: Rhizopoda) in Süddeutschen Wäldern. PhD Thesis, Universität UlmGoogle Scholar
  59. Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton, 392 ppGoogle Scholar
  60. Wardle DA, Bonner KI, Barker GM (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16:585–595CrossRefGoogle Scholar
  61. Weigmann G (2006) Hornmilben (Oribatida). In: Dahl F (ed) Die Tierwelt Deutschlands und der angrenzenden Meeresteile, vol 76. Goecke & Evers, Keltern, p 520Google Scholar
  62. Wilkinson D, Mitchell EAD (2010) Testate amoebae and nutrient cycling; with particular reference to soil. Geomicrobiol J 27:520–533CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Matthias C. Rillig
    • 1
  • Tessa Camenzind
    • 1
  • Julia Gawlik
    • 2
  • Ingeborg Haug
    • 3
  • Valentyna Krashevska
    • 4
  • Mark Maraun
    • 4
  • Dorothee Sandmann
    • 4
  • Stefan Scheu
    • 4
  1. 1.Institut für BiologieFreie Universität BerlinBerlinGermany
  2. 2.Georgraphic InstituteUniversity of ErlangenErlangenGermany
  3. 3.Eberhard Karls-Universität TübingenTübingenGermany
  4. 4.J.F. Blumenbach Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany

Personalised recommendations