Past Dynamics of Speciation in Andean Mountain Rainforests

Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 221)

Abstract

Tropical Andean mountain rainforests harbor extremely high species densities in many animal and plant taxa. This species density could either be related to massive radiation events during Pleistocene climatic oscillations, or may result from recurrent episodes of reassembly of species of more ancient origin, to form current biota concomitant with climatic fluctuations. A calibrated phylogeny of one particularly species-rich insect genus (moths of the geometrid genus Eois) revealed that most speciation events in that clade of highly host-specific herbivores occurred in the Miocene; only very few splits extended into the Pleistocene. This temporal pattern of diversification mirrors major radiation phases in the principal host plant family (Piperaceae) of these moths. This hints to biotic interactions as driving force of adaptive speciation. Calibrated phylogenies from various other Andean organisms likewise give no indication of massive speciation fostered during Pleistocene climate fluctuations.

Notes

Acknowledgments

We thank Florian Bodner, Manuela Zimmermann, Lisamarie Lehner, Ivonne Daniela Vásquez Quezada, Brigitte Gottsberger, and Christine Truxa for assistance with field sampling, laboratory work, access to literature, and/or comments on the manuscript. Further thanks go to the collaborators of the Research Unit in Ecuador, and especially to the staff and inhabitants of the Estación Científica San Francisco. The Ministerio del Medio Ambiente del Ecuador issued research permits, and the foundation Nature and Culture International (Loja, Ecuador) as well as the Universidad Técnica Particular de Loja gave logistic support and allowed access to the study area and their facilities.

References

  1. Antonelli A, Quijada-Mascarenas A, Crawford AJ, Bates JM, Velazco PM, Wüster W (2010) Molecular studies and phylogeography of Amazonian tetrapods and their relation to geological and climatic models. In: Hoorn C, Weeslingh F (eds) Amazonia – Landscape and species evolution: a look into the past. Wiley-Blackwell, Chichester, pp 387–404Google Scholar
  2. Arita HT, Vázquez-Domínguez E (2008) The tropics: cradle, museum or casino? A dynamic null model for latitudinal gradients of species diversity. Ecol Lett 11:653–663PubMedCrossRefGoogle Scholar
  3. Barlow J, Gardner TA, Araujo IS, Avila-Pires TC, Bonaldo AB, Costa JE, Esposito MC, Ferreira LV, Hawes J, Hernandez MI, Hoogmoed MS, Leite RN, Lo-Man-Hung NF, Malcolm JR, Martins MB, Mestre LA, Miranda-Santos R, Nunes-Gutjahr AL, Overal WL, Parry L, Peters SL, Ribeiro-Junior MA, da Silva MN, da Silva MC, Peres CA (2007) Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc Natl Acad Sci USA 104:18555–18560PubMedCrossRefGoogle Scholar
  4. Benton MJ, Harper DAT (2009) Introduction to paleobiology and the fossil record. Wiley-Blackwell, ChichesterGoogle Scholar
  5. Bodner F, Brehm G, Homeier J, Strutzenberger P, Fiedler K (2010a) Caterpillars and host plant records for 59 species of Geometridae (Lepidoptera) from a montane rainforest in southern Ecuador. J Insect Sci 10:67PubMedCrossRefGoogle Scholar
  6. Bodner F, Mahal S, Reuter M, Fiedler K (2010b) Feasibility of a combined sampling approach for studying caterpillar assemblages – a case study from shrubs in the Andean montane forest zone. J Res Lepid 43:27–35Google Scholar
  7. Bodner F, Strutzenberger P, Brehm G, Fiedler K (2012) Species richness and host specificity among caterpillar ensembles on shrubs in the Andes of southern Ecuador. Neotrop Ent 41:375–385CrossRefGoogle Scholar
  8. Brehm G, Pitkin LM, Hilt N, Fiedler K (2005) Montane Andean rain forests are a global diversity hotspot of geometrid moths. J Biogeogr 32:1621–1627CrossRefGoogle Scholar
  9. Brehm G, Fiedler K, Häuser CL, Dalitz H (2008) Methodological challenges of a megadiverse ecosystem. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, vol 198, Ecological Studies. Springer, Berlin, pp 41–47CrossRefGoogle Scholar
  10. Brehm G, Bodner F, Strutzenberger P, Hünefeld F, Fiedler K (2011) Neotropical Eois (Lepidoptera: Geometridae): checklist, biogeography, diversity, and description patterns. Ann Entomol Soc Am 104:1091–1107CrossRefGoogle Scholar
  11. Bridle JR, Pedro PM, Butlin RK (2004) Habitat fragmentation and biodiversity: testing for the evolutionary effects of refugia. Evolution 58:1394–1396PubMedGoogle Scholar
  12. Brunschön C, Behling H (2010) Reconstruction and visualization of upper forest line and vegetation changes in the Andean depression region of southeastern Ecuador since the last glacial maximum – a multi-site synthesis. Rev Palaeobot Palynol 163:139–152CrossRefGoogle Scholar
  13. Bush MB, de Oliveira PE (2006) The rise and fall of the refugial hypothesis of Amazonian speciation: a paleoecological perspective. Biota Neotrop 6:1. http://www.biotaneotropica.org.br/v6n1/en/abstract?point-of-view+bn00106012006
  14. Casner KL, Pyrcz TW (2010) Patterns and timing of diversification in a tropical montane butterfly genus, Lymanopoda (Nymphalidae, Satyrinae). Ecography 33:251–259CrossRefGoogle Scholar
  15. Cockerell TDA (1922) A fossil moth from Florissant, Colorado. Am Mus Novit 34:1–2Google Scholar
  16. Coddington JA, Agnarsson I, Miller JA, Kuntner M, Hormiga G (2009) Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. J Anim Ecol 78:573–584PubMedCrossRefGoogle Scholar
  17. Colinvaux PA (1996) Quaternary environmental history and forest diversity in the Neotropics. In: Jackson JBC, Buff AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 359–405Google Scholar
  18. Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–261PubMedCrossRefGoogle Scholar
  19. Connahs H, Rodríguez-Castañeda G, Walters T, Walla T, Dyer L (2009) Geographic variation in host-specificity and parasitoid pressure of an herbivore (Geometridae) associated with the tropical genus Piper (Piperaceae). J Insect Sci 9:28PubMedCrossRefGoogle Scholar
  20. Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCrossRefGoogle Scholar
  21. Elias M, Joron M, Willmott K, Silva-Brandão KL, Kaiser V, Arias CF, Gomez Piñerez LM, Uribe S, Brower AVZ, Freitas AVL, Jiggins CD (2009) Out of the Andes: patterns of diversification in clearwing butterflies. Mol Ecol 18:1716–1729PubMedCrossRefGoogle Scholar
  22. Endler JA (1982) Pleistocene forest refuges: fact or fancy? In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 641–657Google Scholar
  23. Fjeldsa J, Lovett JC (1997) Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodivers Conserv 6:325–346CrossRefGoogle Scholar
  24. Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Am Bull 112:1091–1105CrossRefGoogle Scholar
  25. Günter S, Cabrera O, Weber M, Stimm B, Zimmermann M, Fiedler K, Knuth J, Boy J, Wilcke W, Iost S, Makeschin F, Werner F, Gradstein R, Mosandl R (2008) Natural forest management in Neotropical mountain rain forests – an ecological experiment. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, vol 198, Ecological Studies. Springer, Berlin, pp 347–359CrossRefGoogle Scholar
  26. Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137PubMedCrossRefGoogle Scholar
  27. Hedges BS, Kumar S (eds) (2009) The timetree of life. Oxford University Press, New YorkGoogle Scholar
  28. Hewitt GM (2004) The structure of biodiversity – insights from molecular phylogeography. Front Zool 1:4PubMedCrossRefGoogle Scholar
  29. Hilt N, Brehm G, Fiedler K (2006) Diversity and ensemble composition of geometrid moths along a successional gradient in the Ecuadorian Andes. J Trop Ecol 22:155–166CrossRefGoogle Scholar
  30. Homeier J, Breckle SW, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42:140–148CrossRefGoogle Scholar
  31. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  32. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  33. Knapp S, Mallet J (2003) Refuting refugia? Science 300:71–72PubMedCrossRefGoogle Scholar
  34. Laurance WL, Useche DC et al (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489:290–294PubMedCrossRefGoogle Scholar
  35. Matos-Maraví PF, Peña C, Willmott KR, Freitas AVL, Wahlberg N (2013) Systematics and evolutionary history of butterflies in the “Taygetis clade” (Nymphalidae: Satyrinae: Euptychiina): towards a better understanding of Neotropical biogeography. Mol Phyl Evol 66:54–68CrossRefGoogle Scholar
  36. Mayr E, O’Hara RJ (1986) The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution 40:55–67CrossRefGoogle Scholar
  37. Moritz C, Patton JL, Schneider CJ, Smith TB (2000) Diversification of rainforest faunas: an integrated molecular approach. Annu Rev Ecol Syst 31:533–563CrossRefGoogle Scholar
  38. Nelson BW, Ferreira CAC, DaSilva MF, Kawasaki ML (1990) Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature 345:714–716CrossRefGoogle Scholar
  39. Peterson KJ, Summons RE, Donoghue PCJ (2007) Molecular palaeobiology. Paleontology 50:775–809CrossRefGoogle Scholar
  40. Pybus OG, Harvey PH (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. Proc R Soc Lond B 267:2267–2272CrossRefGoogle Scholar
  41. Rabosky DL (2006) Likelihood methods for detecting temporal shifts in diversification rates. Evolution 60:1152–1164PubMedGoogle Scholar
  42. Ramirez SR, Roubik DW, Skov C, Pierce NE (2010) Phylogeny, diversification and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae). Biol J Linn Soc 100:552–572CrossRefGoogle Scholar
  43. Ricklefs RE (2009) Speciation, extinction and diversity. In: Butlin R, Bridle J, Schluter D (eds) Speciation and patterns of diversity. Cambridge University Press, New York, pp 257–277CrossRefGoogle Scholar
  44. Rodríguez-Castañeda G, Dyer LA, Brehm G, Connahs H, Forkner RE, Walla TR (2010) Tropical forests are not flat: how mountains affect herbivore diversity. Ecol Lett 13:1348–1357PubMedCrossRefGoogle Scholar
  45. Rull V (2008) Speciation timing and neotropical biodiversity: the tertiary-quaternary debate in the light of molecular phylogenetic evidence. Mol Ecol 17:2722–2729PubMedCrossRefGoogle Scholar
  46. Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC (2009) Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biol 7:e1000056CrossRefGoogle Scholar
  47. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  48. Sedano RE, Burns KJ (2010) Are the Northern Andes a species pump for neotropical birds? phylogenetics and biogeography of a clade of neotropical tanagers (Aves: Thraupini). J Biogeogr 37:325–343CrossRefGoogle Scholar
  49. Sepulchre P, Sloan LC, Fluteau F (2010) Modelling the response of Amazonian climate to the uplift of the Andean mountain range. In: Hoorn C, Weeslingh F (eds) Amazonia – Landscape and species evolution: a look into the past. Wiley-Blackwell, Chichester, pp 211–222Google Scholar
  50. Smith JF, Stevens AC, Tepe EJ, Davidson C (2008) Placing the origin of two species-rich genera in the late Cretaceous with later species divergence in the Tertiary: a phylogenetic, biogeographic and molecular dating analysis of Piper and Peperomia (Piperaceae). Plant Syst Evol 275:9–30CrossRefGoogle Scholar
  51. Strutzenberger P, Fiedler K (2011) Temporal patterns of diversification in Andean Eois, a species-rich clade of moths (Lepidoptera, Geometridae). J Evol Biol 24:919–925PubMedCrossRefGoogle Scholar
  52. Strutzenberger P, Brehm G, Bodner F, Fiedler K (2010) Molecular phylogeny of Eois (Lepidoptera, Geometridae): evolution of wing patterns and host plant use in a species-rich group of Neotropical moths. Zool Scr 39:603–620CrossRefGoogle Scholar
  53. Strutzenberger P, Brehm G, Fiedler K (2011) DNA barcoding-based species delimitation increases species count of Eois (Geometridae) moths in a well-studied tropical mountain forest by up to 50%. Insect Sci 18:349–362CrossRefGoogle Scholar
  54. Wahlberg N, Freitas AVL (2007) Colonization of and radiation in South America by butterflies in the subtribe Phyciodina (Lepidoptera: Nymphalidae). Mol Phylogenet Evol 44:1257–1272PubMedCrossRefGoogle Scholar
  55. Wiens JJ, Graham CH (2005) Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539CrossRefGoogle Scholar
  56. Wray GA, Levinton JS, Shapiro LH (1996) Molecular evidence for deep Precambrian divergences among Metazoan phyla. Science 274:568–573CrossRefGoogle Scholar
  57. Yamamoto S, Sota T (2007) Phylogeny of the Geometridae and the evolution of winter moths inferred from simultaneous analysis of mitochondrial and nuclear genes. Mol Phylogenet Evol 44:711–723PubMedCrossRefGoogle Scholar
  58. Zachos J, Pagani M, Sloan L, Thomas E, Billups L (2001) Trends, rhythms, and aberrations in global climate 65Ma to present. Science 292:686–693PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Tropical Ecology and Animal BiodiversityUniversity of ViennaViennaAustria
  2. 2.Senckenberg Natural History CollectionsDresdenGermany

Personalised recommendations