Advertisement

Landscape History, Vegetation History, and Past Human Impacts

  • Fernando Rodriguez
  • Achim Bräuning
  • Andrés Gerique
  • Hermann Behling
  • Franziska Volland
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 221)

Abstract

Three pollen profiles reveal vegetation changes during the past 16,500 years of the Podocarpus National Park (PNP) in the Southern Ecuadorian Andes. Andean glaciers retreated after the Last Glacial Maximum and the Younger Dryas cold interval, accompanied by a marked decline of páramo vegetation between 11660 and 4280 b.p., and the expansion of subpáramo vegetation. Polylepis was widespread during the warm early Holocene, whereupon páramo vegetation increased after 4200 b.p. The upper montane forest became abundant after 4200 b.p., and an increase of páramo taxa since 500 b.p. indicates moister climate since then. Charcoal particle concentration maxima are evident between 1800 to 1600 b.p. and 600 to 400 b.p. The mountain region became permanently settled at the end of the nineteenth century when the exploitation of natural resources was initiated. Decadal variations in ring-width chronology from Cedrela montana are possibly related to large-scale atmospheric pressure variations in the tropical Pacific Ocean.

Keywords

Southern Oscillation Index Tropical Pacific Ocean Montane Rainforest Forest Taxon Mountain Rainforest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bakker C, Moscol Olivera M, Hooghiemstra H (2008) Holocene environmental change at the upper timberline in northern Ecuador. Holocene 18:1–17CrossRefGoogle Scholar
  2. Beck E, Makeschin F, Haubrich F, Bendix J, Richter M, Valerezo C (2008) The ecosystem (Reserva Biológica San Francisco). In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 1–13Google Scholar
  3. Bräuning A (2009) Climate variability of the tropical Andes since the Pleistocene. Progress Geosci 22:13–25Google Scholar
  4. Bräuning A, Volland-Voigt F, Burchardt I, Ganzhi O, Nauss T, Peters T (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rain forest in southern Ecuador. Erdkunde 63(4):337–345CrossRefGoogle Scholar
  5. Broecker W (1997) Future directions of paleoecological research. J Quaternary Sci 16:821–825Google Scholar
  6. Bush MB, Colinvaux PA (1988) A 7000-year pollen record from the Amazon lowlands, Ecuador. Vegetatio 76:141–154Google Scholar
  7. Bush MB, Colinvaux PA, Wiemann MC, Piperno DR, Liu KB (1990) Late Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quaternary Res 34:330–345CrossRefGoogle Scholar
  8. Bussmann RW (2005) Bosques andinos del sur de Ecuador, clasificación, regeneración y uso. Rev Peru Biol 12:203–216Google Scholar
  9. Churchill SP, Balslev H, Forero E, Luteyn JL (eds) (1995) Biodiversity and conservation of neotropical montane forests. The New York Botanical Garden, Bronx, NYGoogle Scholar
  10. Clapperton CW (1993) Quaternary geology and geomorphology of South America. Elsevier, Amsterdam, 779 ppGoogle Scholar
  11. Colinvaux PA, Bush MB, Steinitz-Kannan M, Miller MC (1997) Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon. Quat Res 48:69–78CrossRefGoogle Scholar
  12. Colinvaux PA, Frost M, Frost I, Liu K-B, Steinitz-Kannan M (1988a) Three pollen diagrams of forest disturbance in the western Amazon basin. Rev Palaeobot Palynol 55:73–81CrossRefGoogle Scholar
  13. Colinvaux PA, Olson K, Liu K-B (1988b) Late-Glacial and Holocene pollen diagrams from two endorheic lakes of the inter-Andean Plateau of Ecuador. Rev Palaeobot Palynol 55:83–99CrossRefGoogle Scholar
  14. Conde PFrT (1988) Los Yaguarzongos. Historia de los Shuar de Zamora. Abya-Yala, Quito. Reprint of the publication “Conde PFrT (1931) Los Yaguarsongos. Historia de los Jívaros de Zamora. Loja”Google Scholar
  15. Cook E, Kairiukstis LA (1990) Methods of dendrochronology. Applications in the environmental sciences. SpringerGoogle Scholar
  16. Di Pasquale G, Maziano M, Impagliazzo S, Lubritto C, De Natale A, Bader M (2008) The Holocene treeline in the northern Andes (Ecuador): first evidence from soil charcoal. Palaeogeogr Palaeoclimatol Palaeoecol 259:17–34CrossRefGoogle Scholar
  17. Dodson CH, Gentry AH (1991) Biological extinction in Western Ecuador. Ann MO Bot Gard 78:273–295CrossRefGoogle Scholar
  18. Fægri K, Iversen J (1989) Textbook of pollen analysis (4th edn by Fægri K, Kaland PE, Krzwywinski K). Wiley, ChichesterGoogle Scholar
  19. Gerique A (2010) Biodiversity as a resource: plant use and land use systems among the Shuar, Saraguros, and Mestizos in tropical rainforest areas of southern Ecuador. PhD Thesis, Friedrich-Alexander-Universität Erlangen-NürnbergGoogle Scholar
  20. Global Change Master Directory (GCMD) (2012) NASA. http://gcmd.nasa.gov. Accessed 28 Dec 2011
  21. González-Suarez F (1890) Historia General de la República del Ecuador. Tomo I, Quito. Cited in Jaramillo Alvarado P (2002) Historia de Loja. Municipio de Loja-Senefelder. LojaGoogle Scholar
  22. Grimm EC (1987) CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  23. Guffroy J (2004) Catamayo precolombino. Investigaciones arqueológicas en la provincia de Loja (Ecuador). IRD Editions, ParisGoogle Scholar
  24. Hansen BCS, Rodbell DT, Seltzer GO, Leon B, Young KR, Abbott M (2003) Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador. Palaeogeogr Palaeoclimatol Palaeoecol 194:79–108CrossRefGoogle Scholar
  25. Heine K (2011) Late Quaternary glaciations of Ecuador. In: Ehlers J, Gibbard PL (eds) Developments in quaternary science, vol 15. Elsevier, Amsterdam, pp 803–813Google Scholar
  26. Hocquenghem AM, Poma J, Salcedo L (2009) La Red Víal Incaica en la Región Sur del Ecuador. Centro de Investigación y Apoyo al Desarrollo Local-Regional, Universidad Nacional de Loja, LojaGoogle Scholar
  27. Liu K-B, Colinvaux PA (1985) Forest changes in the Amazon Basin during the last glacial maximum. Nature 318:556–557CrossRefGoogle Scholar
  28. Lozano P, Delgado T, Aguirre Z (2003) Estado actual de la flora ende´mica exclusiva y su distribucio´n en el occidente del Parque Nacional Podocarpus. Fundacio´n Funbota´nica, Herbario y Jardı´n Bota´nico “Reinaldo Espinosa”. Loja, EcuadorGoogle Scholar
  29. Maldonado N (2002) Clima y vegetación de la región sur del Ecuador. In: Aguirre Z, Madsen JE, Cotton E, Balslev H (eds) Botánica Austroecuatoriana. Estudios sobre los recursos vegetales en las provincias de El Oro, Loja y Zamora Chinchipe. Abya Yala, pp 1–28Google Scholar
  30. Mark BG, Seltzer GO, Rodbell DT (2004) Late Quaternary glaciations of Ecuador, Peru and Bolivia. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations – extent and chronology, Part III: South America, Asia, Africa, Australasia, Antarctica: Developments in quaternary science, vol 2. Elsevier, Amsterdam, pp 151–163Google Scholar
  31. McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCAL04 Southern Hemisphere Calibration, 0–11.0 CAL KYR BP. Radiocarbon 46:1087–1092Google Scholar
  32. Niemann H, Behling H (2008) Late Quaternary vegetation, climate and fire dynamics inferred from the El Tiro record in the southeastern Ecuadorian Andes. J Quaternary Sci 23:203–212CrossRefGoogle Scholar
  33. Niemann H, Behling H (2009) Late Pleistocene and Holocene environmental change inferred from the Cocha Caranga sediment and soil records in the southeastern Ecuadorian Andes. Palaeogeogr Palaeoclimatol Palaeoecol 276:1–14CrossRefGoogle Scholar
  34. Pohle P (2008) The people settled around Podocarpus National Park. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer Verlag, Berlin, pp 25–36Google Scholar
  35. Richter M, Diertl KH, Emck P, Peters T, Beck E (2009) Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador. Landsc Online 12:1–35Google Scholar
  36. Rodbell DT (1992) Late Pleistocene equilibrium-line reconstructions in the Northern Peruvian Andes. Boreas 21:43–52CrossRefGoogle Scholar
  37. Thompson LG, Mosley-Thompson E, Henderson KA (2000) Ice core palaeoclimate records in tropical South America since the last glacial maximum. J Quaternary Sci 15:377–394CrossRefGoogle Scholar
  38. Weng C, Bush MB, Athens JS (2002) Holocene climate change and hydrarch succession in lowland Amazonian Ecuador. Rev Palaeobot Palynol 120:73–90CrossRefGoogle Scholar
  39. Weninger B, Jöris O, Danzeglocke U (2004) Calpal – the Cologne radiocarbon CALibration and PALaeoclimate research package. http://www.calpal.de. Accessed Aug 2010
  40. Wille M, Hooghiemstra H, Hofstede R, Fehse J, Sevink J (2002) Upper forest line reconstruction in a deforested area in northern Ecuador based on pollen and vegetation analysis. J Trop Ecol 18:409–440CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fernando Rodriguez
    • 1
  • Achim Bräuning
    • 2
  • Andrés Gerique
    • 2
  • Hermann Behling
    • 1
  • Franziska Volland
    • 2
  1. 1.Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant SciencesUniversity of GöttingenGöttingenGermany
  2. 2.Institute of GeographyUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations