Skip to main content

Effects of Nutrient Addition on the Productivity of Montane Forests and Implications for the Carbon Cycle

  • Chapter
  • First Online:
Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador

Abstract

Both carbon storage and sequestration are major ecosystem services provided by forests. The NUMEX (Ecuadorian NUtrient Manipulation EXperiment) study aims to identify the underlying mechanisms for the variation of these services as affected by future changes in nutrient availability. The ongoing experiment is being conducted in southern Ecuador to improve our understanding of the effects of continuous moderate N and P addition to tropical montane forest ecosystems. This chapter summarizes the short-term effects of nutrient addition evident at the end of the experiment’s first year. The rapid responses of the studied Andean montane forests to N and P addition observed at this early stage of the experiment illustrate the vulnerability of the forests to higher nutrient deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems – hypotheses revisited. Bioscience 48(11):921–934

    Article  Google Scholar 

  • Adamek M, Corre MD, Hölscher D (2009) Early effect of elevated nitrogen input on above-ground net primary production of a lower montane rain forest, Panama. J Trop Ecol 25:637–647

    Article  Google Scholar 

  • Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Glob Biogeochem Cycles 22, GB4011

    Google Scholar 

  • Bräuning A, Volland-Voigt F, Burchardt I, Ganzhi O, Nauss T, Peters T (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rain forest in southern Ecuador. Erdkunde 63:337–345

    Article  Google Scholar 

  • Cavelier J, Tanner E, Santamaria J (2000) Effect of water, temperature and fertilizers on soil nitrogen net transformations and tree growth in an elfin cloud forest of Colombia. J Trop Ecol 16:83–99

    Article  Google Scholar 

  • Cleveland CC, Townsend AR (2006) Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad Sci USA 103:10316–10321

    Article  PubMed  CAS  Google Scholar 

  • Cleveland CC, Reed SC, Townsend AR (2006) Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503

    Article  PubMed  Google Scholar 

  • Corre MD, Veldkamp E, Arnold J, Wright SJ (2010) Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama. Ecology 91:1715–1729

    Article  PubMed  Google Scholar 

  • Cusack D, Torn MS, McDowell WH, Silver WL (2010) The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Glob Chang Biol 16:2555–2572

    Google Scholar 

  • Cusack DF, Silver WL, Torn MS, McDowell WH (2011) Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests. Biogeochemistry 104:203–225

    Article  CAS  Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intra annual tree growth: what kind of information can be inferred? Dendrochronologia 25:113–124

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Emck P (2007) A climatology of South Ecuador. With special focus on the major Andean ridge as Atlantic-Pacific climate divide. Dissertation, Universität Erlangen-Nürnberg, 275 pp

    Google Scholar 

  • Gamboa AM, Hidalgo C, de Leon F, Etchevers JD, Gallardo JF, Campo J (2010) Nutrient addition differentially affects soil carbon sequestration in secondary tropical dry forests: early- versus late-succession stages. Restor Ecol 18(2):252–260

    Article  Google Scholar 

  • Giardina CP, Binkley D, Ryan MG, Fownes JH, Senock RS (2004) Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia 139:545–550

    Article  PubMed  Google Scholar 

  • Gower ST, Vitousek PM (1989) Effects of nutrient amendments on fine root biomass in a primary successional forest in Hawaii. Oecologia 81:566–568

    Article  Google Scholar 

  • Gruber N, Galloway N (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  PubMed  CAS  Google Scholar 

  • Högberg P, Fan H, Quist M, Binkley D, Tamm CO (2006) Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Glob Chang Biol 12:489–499

    Article  Google Scholar 

  • Homeier J, Werner FA, Gradstein SR, Breckle S-W, Richter M (2008) Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 87–100

    Google Scholar 

  • Homeier J, Hertel D, Camenzind T, Cumbicus NL, Maraun M, Martinsin GO, Poma LN, Rillig MC, Sandmann D, Scheu S, Veldkamp E, Wilcke W, Wullaert H, Leuschner C (2012) Tropical Andean forests are highly susceptible to nutrient inputs - rapid effects of experimental N and P addition to an Ecuadorian montane forest. PLoS One 7:e47128

    Article  PubMed  CAS  Google Scholar 

  • Hyvönen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  PubMed  Google Scholar 

  • Koehler B, Corre MD, Veldkamp E, Sueta JP (2009) Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale. Biogeosciences 6:2973–2983

    Article  CAS  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Lewis SL, Malhi Y, Phillips OL (2004) Fingerprinting the impacts of global change on tropical forests. Phil Trans R Soc Lond B 359:437–462

    Article  CAS  Google Scholar 

  • Li Y, Xu M, Zou X (2006) Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest. Glob Chang Biol 12:284–293

    Article  Google Scholar 

  • Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manage 196:7–28

    Article  Google Scholar 

  • McGroddy M, Silver WL (2000) Variations in belowground carbon storage and soil CO2 flux rates along a wet tropical climate gradient. Biotropica 32:614–624

    Article  Google Scholar 

  • Mirmanto E, Proctor J, Green J, Nagy L, Suriantata (1999) Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Phil Trans R Soc Lond 354:1825–1829

    Google Scholar 

  • Moser G, Hertel D, Leuschner C (2007) Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:924–935

    Article  Google Scholar 

  • Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Chang Biol 17:2211–2226

    Article  Google Scholar 

  • Pardo LH, McNulty SG, Boggs JL, Duke S (2007) Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US. Environ Pollut 149:293–302

    Article  PubMed  CAS  Google Scholar 

  • Röderstein M, Hertel D, Leuschner C (2005) Above- and below-ground litter production in three tropical montane forests in southern Ecuador. J Trop Ecol 21:483–492

    Article  Google Scholar 

  • Tanner EVJ, Kapos V, Freskos S, Healey JR, Theobald AM (1990) Nitrogen and phosphorus fertilization of Jamaican montane forest trees. J Trop Ecol 6:231–238

    Article  Google Scholar 

  • Tanner EVJ, Kapos V, Franco W (1992) Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73:78–86

    Article  Google Scholar 

  • Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22

    Article  Google Scholar 

  • Unger M, Homeier J, Leuschner C (2013) Relationships among leaf area index, below-canopy light availability and tree diversity along a transect from tropical lowland to montane forests in NE Ecuador. Trop Ecol 54(1):33–45

    Google Scholar 

  • Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:63–75

    Article  CAS  Google Scholar 

  • Volland-Voigt F, Bräuning A, Ganzhi O, Peters T, Maza H (2011) Radial stem variations of Tabebuia chrysantha (Bignoniaceae) in different tropical forest ecosystems of southern Ecuador. Trees 25:39–48

    Article  Google Scholar 

  • Wolf K, Veldkamp E, Homeier J, Martinson GO (2011) Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob Biogeochem Cycles 25, GB4009

    Google Scholar 

  • Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20:553–560

    Article  PubMed  Google Scholar 

  • Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Homeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Homeier, J. et al. (2013). Effects of Nutrient Addition on the Productivity of Montane Forests and Implications for the Carbon Cycle. In: Bendix, J., et al. Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador. Ecological Studies, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38137-9_23

Download citation

Publish with us

Policies and ethics