Advertisement

Environmental Changes Affecting the Andes of Ecuador

  • Thorsten Peters
  • Thomas Drobnik
  • Hanna Meyer
  • Melanie Rankl
  • Michael Richter
  • Rütger Rollenbeck
  • Boris Thies
  • Jörg Bendix
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 221)

Abstract

Global terrestrial biodiversity is strongly affected by expanding land use, climate change and nitrogen deposition. This holds especially true for tropical forests which already show large changes due mainly to land use activities. The extent of land use in Ecuador has increased considerably during the last century. An extensive network of primary and secondary roads now opens up most of the western and central areas of the country, while parts of the Oriente have been converted into protected areas. Concerning climate change warming is predicted to be moderate for western Ecuador, while the eastern part of the country will suffer from rising temperatures that will affect a floristic region harbouring one of the global diversity hotspots for vascular plant species. Changes in precipitation are expected to be spatially much less cohesive, with increasing and decreasing amounts of precipitation being unevenly distributed throughout the Andes. The spatial distribution and temporal dynamics of precipitation and wind also regulate the deposition of rainwater-dissolved matter in the mountain ecosystem which results from biomass burning in Amazonia. In this chapter, our current knowledge as to the past development of these major threats of the ecosystem will be discussed focusing on the study area South Ecuador.

Keywords

Biomass Burning Deforestation Rate Annual Lapse Rate Lowland Tropical Rainforest Annual Deforestation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Paul Ziegler and Erwin Beck for linguistic proofreading this work.

References

  1. American Geographical Society of New York (1938) South America 1:1.000.000. New YorkGoogle Scholar
  2. Barthlott W, Hostert A, Kier G, Küper W, Kreft H, Mutke J, Rafiqpoor D, Sommer JH (2007) Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde 61:305–315CrossRefGoogle Scholar
  3. Bebbington A (1993) Sustainable livelihood development in the Andes: local institutions and regional resource use in Ecuador. Dev Policy Rev 11:5–30PubMedCrossRefGoogle Scholar
  4. Bendix J, Rollenbeck R, Richter M, Fabian P, Emck P (2008a) Climate. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, vol 198, Ecological studies. Springer, Berlin, pp 63–73CrossRefGoogle Scholar
  5. Bendix J, Rollenbeck R, Fabian P, Emck P, Richter M, Beck E (2008b) Climate variability. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, vol 198, Ecological studies. Springer, Berlin, pp 280–291Google Scholar
  6. Bendix J, Behling H, Peters T, Richter M, Beck E (2010) Functional biodiversity and climate change along an altitudinal gradient in a tropical mountain rainforest. In: Tscharntke T, Leuschner C, Veldkamp E, Faust H, Guhardja E, Bidin A (eds) Tropical rainforests and agroforests under global change, Environmental Science and Engineering. Subseries Environmental Science. Springer, Berlin, pp 239–268CrossRefGoogle Scholar
  7. Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Global Biogeochem Cycles 22, GB4011Google Scholar
  8. Bruhns KO (1994) Ancient south America. Cambridge University Press, CambridgeGoogle Scholar
  9. Brummitt N, Lughadha EN (2003) Biodiversity: where’s hot and where’s not. Conserv Biol 17:1442–1448CrossRefGoogle Scholar
  10. Colwell RK, Brehm G, Cardelius CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–261PubMedCrossRefGoogle Scholar
  11. Da Rocha GO, Allen AG, Cardoso AA (2005) Influence of agricultural biomass burning on aerosol size distribution and dry deposition in southeastern Brazil. Environ Sci Technol 39(14):5293–5301PubMedCrossRefGoogle Scholar
  12. De Koning GHJ, Veldkamp A, Fresco LO (1998) Land use in Ecuador: a statistical analysis at different aggregation levels. Agric Ecosyst Environ 70:231–247CrossRefGoogle Scholar
  13. Dodson CH, Gentry AH (1991) Biological extinction in western Ecuador. Ann Mo Bot Gard 78:273–295CrossRefGoogle Scholar
  14. Ellenberg H (1979) Man’s influence on tropical mountain ecosystems in south America. J Ecol 67(2):401–416CrossRefGoogle Scholar
  15. Emck P (2007) A climatology of South Ecuador. With special focus on the major Andean Ridge as Atlantic-Pacific Climate Divide. PhD thesis, University of Erlangen http://www.opus.ub.uni-erlangen.de/opus/frontdoor.php?source_opus=656 Cited 1.12.2011
  16. Fabian P, Kohlpaintner M, Rollenbeck R (2005) Biomass burning in the Amazon-fertilizer for the mountainous rain forest in Ecuador. Environ Sci Pollut Res Int 12(5):290–296PubMedCrossRefGoogle Scholar
  17. FAO (2005) State of the world’s forests 2005. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  18. Goerner A, Gloaguen R, Makeschin F (2007) Monitoring of the Ecuadorian mountain rainforest with remote sensing. J Appl Remote Sens 1:013527CrossRefGoogle Scholar
  19. Göttlicher D, Obregón A, Homeier J, Rollenbeck R, Nauss T, Bendix J (2009) Land cover classification in the Andes of southern Ecuador using Landsat ETM+ data as a basis for SVAT modelling. Int J Remote Sens 30:1867–1886CrossRefGoogle Scholar
  20. Harden C (1993) Land use, soil erosion, and reservoir sedimentation in an Andean drainage basin in Ecuador. Mt Res Dev 13:177–184CrossRefGoogle Scholar
  21. Head office of Geodesy and Cartography (1969) World Map 1:2.500.000. German Democratic Republic, BerlinGoogle Scholar
  22. Instituto Geográfico Militar (2000) Mapa del Ecuador 1:1.000.000. Quito, EcuadorGoogle Scholar
  23. Jokisch BD, Lair BM (2002) One last stand? Forests and change on Ecuador’s eastern Cordillera. Geogr Rev 92(2):235–256CrossRefGoogle Scholar
  24. Keating PL (1997) Mapping vegetation and anthropogenic disturbances in southern Ecuador with remote sensing techniques: implications for park management. Yearb Conf Latin Am Geogr 23:77–90Google Scholar
  25. Köster N, Friedrich K, Nieder J, Barthlott W (2009) Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conserv Biol 23(4):911–919PubMedCrossRefGoogle Scholar
  26. Luteyn JL (1992) Páramos: why study them? In: Balslev H, Luteyn JL (eds) Páramo: an Andean ecosystem under human influence. Academic, London, pp 151–170Google Scholar
  27. Marquette CM (2006) Settler welfare on tropical forest frontiers in Latin America. Popul Environ 27(5–6):397–444CrossRefGoogle Scholar
  28. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutt R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL (eds) Global climate projections – climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 996 pGoogle Scholar
  29. Miles L, Grainger A, Philips O (2004) The impact of global climate change on tropical forest biodiversity in Amazonia. Glob Ecol Biogeogr 13:553–565CrossRefGoogle Scholar
  30. Millennium Ecosystem Assessment (2005) Ecosystem and human well-being: biodiversity synthesis. World Resources Institute, Washington, DCGoogle Scholar
  31. Mittermeier RA, Robles Gil P, Mittermeier CG (1997) Megadiversity: earth’s biologically wealthiest nations. Monterrey, MexicoGoogle Scholar
  32. Mosandl R, Günter S, Stimm B, Weber M (2008) Ecuador suffers the highest deforestation rate in South America. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, Ecological studies. Springer, Berlin, pp 37–40CrossRefGoogle Scholar
  33. Myers N (1988) Threatened biotas: ‘hot spots’ in tropical forests. Environmentalist 8:187–208PubMedCrossRefGoogle Scholar
  34. Myers N (1993) Tropical forests: the main deforestation fronts. Environ Conserv 20:9–16CrossRefGoogle Scholar
  35. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  36. Peters T, Diertl K, Gawlik J, Rankl M, Richter M (2010) Vascular plant diversity in natural and anthropogenic ecosystems in the Andes of southern Ecuador – studies from the Rio San Francisco valley. Mt Res Dev 30:344–352CrossRefGoogle Scholar
  37. Pimm R, Raven P (2000) Biodiversity – extinction by numbers. Nature 403:843–845PubMedCrossRefGoogle Scholar
  38. Pohle P, Gerique A (2008) Sustainable and non sustainable use of natural resources by indigenous and local communities. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, Ecological studies. Springer, Berlin, pp 331–346CrossRefGoogle Scholar
  39. Pohle P, Gerique A, Park M, Lopez Sandoval MF (2009) Human ecological dimensions in sustainable utilization and conservation of tropical mountain forests under global change in southern Ecuador. In: Tscharnke T, Leuschner C, Veldkamp E, Faust H, Guhardja E, Bidin A (eds) Tropical rainforests and agroforests under global change, Environmental Science and Engineering. Subseries Environmental Science. Springer, Berlin, pp 477–509Google Scholar
  40. Richter M (2003) Using plant functional types and soil temperatures for eco-climatic interpretation in southern Ecuador. Erdkunde 57:161–181CrossRefGoogle Scholar
  41. Richter M, Diertl KH, Emck P, Peters T, Beck E (2009) Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador. Landscape Online 12/2009Google Scholar
  42. Rollenbeck R (2010) Global sources – local impacts: natural and anthropogenic matter deposition in the Andes of Ecuador. Geoöko 1–2:1–25Google Scholar
  43. Rollenbeck R, Bendix J, Fabian P (2006) Spatial and temporal dynamics of atmospheric water- and nutrient inputs in tropical mountain forests of southern Ecuador. In: Bruijnzeel LA et al (eds) Mountains in the Mist: science for conserving and managing tropical montane cloud forests. University of Hawaii, HonoluluGoogle Scholar
  44. Sala OE, Chapin FS III, Armesto JJ, Berlow R, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge D, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  45. Sarmiento FO, Frolich LM (2002) Andean cloud forest tree lines. Naturalness, agriculture and the human dimension. Mt Res Dev 22(3):278–287CrossRefGoogle Scholar
  46. Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10:989–1003CrossRefGoogle Scholar
  47. Southgate D, Whitaker M (1992) Promoting resource degradation in Latin America: tropical deforestation, soil erosion, and coastal ecosystem disturbance in Ecuador. Econ Dev Cult Change 40:787–807CrossRefGoogle Scholar
  48. Southgate D, Whitaker M (1994) Economic progress and the environment: one developing country’s policy crisis. Oxford University Press, New York, p 150Google Scholar
  49. Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21th century. J Geophys Res 114, D02108CrossRefGoogle Scholar
  50. Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci USA 104:5738–5742PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thorsten Peters
    • 1
  • Thomas Drobnik
    • 1
  • Hanna Meyer
    • 2
  • Melanie Rankl
    • 1
  • Michael Richter
    • 1
  • Rütger Rollenbeck
    • 2
  • Boris Thies
    • 2
  • Jörg Bendix
    • 2
  1. 1.Institute of GeographyUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Laboratory for Climatology and Remote Sensing, Faculty of GeographyUniversity of MarburgMarburgGermany

Personalised recommendations