Current Provisioning Services: Pasture Development and Use, Weeds (Bracken) and Management

  • Kristin Roos
  • Jörg Bendix
  • Giulia F. Curatola
  • Julia Gawlik
  • Andrés Gerique
  • Ute Hamer
  • Patrick Hildebrandt
  • Thomas Knoke
  • Hanna Meyer
  • Perdita Pohle
  • Karin Potthast
  • Boris Thies
  • Alexander Tischer
  • Erwin Beck
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 221)

Abstract

This chapter reports on the historical expansion and current state of the pastures in the Rio San Francisco valley. Its major part is inhabited by the Mestizos, who do not have a long-standing pasture tradition. Three types of pastures were identified by the dominant grass species: the “pastos azules” (Holcus lanatus), the Yaragua pastures (Melinis minutiflora) and the dominating “pastos mieles” (Setaria sphacelata). The peculiarities, species composition, soil dynamics and agricultural values of these pastures are discussed. Except for the pastos azules on small flattenings in the otherwise steep slopes of the valley, pastures in the area suffer from invasion by aggressive weeds, mainly the tropical bracken fern. Abandonment of pastures is fostered by the use of fire to combat weeds and stimulate grass growth. This type of low-yield pasture farming is not sustainable. The earnings of livestock farming are not sufficient for subsistence. Diversification of the income portfolio is necessary.

References

  1. Axtmayer JH, Asenjo CJ, Cook DH (1938) The nutritive value of some forage crops of Puerto Rico. I. Grasses. J Agric Univ P Rico 22:95–121Google Scholar
  2. Beck E, Hartig K, Roos K (2008) Forest clearing by slash and burn. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical Mountain Ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlinm, pp 371–374Google Scholar
  3. D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23:63–87Google Scholar
  4. da Costa JL, Campos J, Garcia R, do Nascimento Junior D (1981) Effect of closing date on the nutritive value of molasses grass (Melinis minutiflora Pal de Beauv) with reserve pasture for the dry season. Rev Bras Zool 10:765–784Google Scholar
  5. Duke JA (1979) Ecosystematic data on economic plants. Quart J Crude Drug Res 17:91–110Google Scholar
  6. Gawlik J (2010) Phytodiversität auf anthropogen veränderten Standorten im San Francisco Tal – Südecuador. Diploma Thesis, Universität Erlangen-NürnbergGoogle Scholar
  7. Gerique A (2010) Biodiversity as a resource: plant use and land use among the Shuar, Saraguros, and Mestizos in tropical rainforest areas of southern Ecuador. PhD Thesis, University of Erlangen-NürnbergGoogle Scholar
  8. Göhl B (1982) Les aliments du bétail sous les tropiques. FAO, Division de Production et Santé Animale, RomaGoogle Scholar
  9. Göttlicher D, Albert J, Nauß T, Bendix J (2011) Optical properties of selected plants from a tropical mountain ecosystem – traits for plant functional types to parameterize a land surface model. Ecol Model 222:493–502CrossRefGoogle Scholar
  10. Hacker JB (1974) Variation in oxalate, major cations and dry matter digestibility of 47 introduction of the tropical grass Setaria. Trop Grasslands 8:145–154Google Scholar
  11. Hacker JB, Jones RJ (1969) The Setaria sphacelata complex – a review. Trop Grasslands 3:13–34Google Scholar
  12. Hamer U, Rumpel C, Dignac MF (2012a) Cutin and suberin biomarkers as tracer for the turnover of shoot and root derived organic matter along a chronosequence of Ecuadorian pasture soils. Eur J Soil Sci 63:808–819. doi:10.1111/j.1365-2389.2012.01476.x CrossRefGoogle Scholar
  13. Hamer U, Potthast K, Burneo JI, Makeschin F (2012b) Nutrient stocks and phosphorus fractions in mountain soils of Southern Ecuador after forest to pasture conversion. Biogeochemistry 112:495–510. doi:10.1007/s10533-012-9742-z CrossRefGoogle Scholar
  14. Hartig K, Beck E (2003) The bracken fern (Pteridium arachnoideum (Kaulf.) Macon dilemma in the Andes of Southern Ecuador. Ecotropica 9:3–13Google Scholar
  15. Jones RJ, Ford CW (1972) The soluble oxalate content of some tropical pasture grasses grown in South-East Queensland. Trop Grasslands 6:201–204Google Scholar
  16. Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118CrossRefGoogle Scholar
  17. Knoke T, Weber M, Barkmann J, Pohle P, Calvas B, Medina C, Aguirre N, Günter S, Stimm B, Mosandl R, von Walter F, Maza B, Gerique A (2009) Effectiveness and distributional impacts of payments for reduced carbon emissions from deforestation. Erdkunde 63:365–384CrossRefGoogle Scholar
  18. Knoke T, Steinbeis OE, Bösch M, Román-Cuesta RM, Burkhardt T (2011) Cost-effective compensation to avoid carbon emissions from forest loss: an approach to consider price–quantity effects and risk-aversion. Ecol Econ 70:1139–1153CrossRefGoogle Scholar
  19. Landon JR (1991) Booker tropical soil manual. Longman, London, 450 pGoogle Scholar
  20. Makeschin F, Haubrich F, Abiy M, Burneo JI, Klinger T (2008) Pasture management and natural soil regeneration. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 397–408Google Scholar
  21. Merrill EH, Callahan-Olson A, Raedeke KJ, Taber RD, Anderson RJ (1995) Elk (Cervus elaphus roosevelti) dietary composition and quality in the Mount St. Helens blast zone. Northwest Sci 69:9–18Google Scholar
  22. Middleton CH, Barry GA (1978) A study of oxalate concentration in fine grasses in the wet tropics of Queensland. Trop Grasslands 12:28–35Google Scholar
  23. Mosandl R, Günter S, Stimm B, Weber M (2008) Ecuador suffers the highest deforestation rate in South America. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 37–40Google Scholar
  24. Peters T, Diertl K-H, Gawlik J, Rankl M, Richter M (2010) Vascular plant diversity in natural and anthropogenic ecosystems in the Andes of southern Ecuador. Mt Res Dev 30:344–352CrossRefGoogle Scholar
  25. Pohle P, Gerique A (2006) Traditional ecological knowledge and biodiversity management in the Andes of southern Ecuador. Swiss J Geogr 4:275–285Google Scholar
  26. Potthast K, Hamer U, Makeschin F (2011) Land-use change in a tropical mountain rainforest region of Southern Ecuador affects soil microorganisms and nutrient cycling. Biogeochemistry. doi:10.1007/s10533-10011-19626-10537 Google Scholar
  27. Roos K, Rollenbeck R, Peters T, Bendix J, Beck E (2010) Growth of tropical bracken (Pteridium arachnoideum): response to weather variations and burning. Inv Plant Sci Manage 3:402–411. doi:10.1614/IPSM-D-09-00031.1 CrossRefGoogle Scholar
  28. Seawright AA, Groenendyk S, Silva KING (1970) An outbreak of oxalate poisoning in cattle grazing Setaria sphacelata. Austral Vet J 46:293–296PubMedCrossRefGoogle Scholar
  29. Thies B, Meyer H, Nauss T, Bendix J (2012) Projecting land use/land cover changes in a tropical mountain forest of southern Ecuador. J Land Use Sci. doi:10.1080/1747423X.2012.718378
  30. US State Department (2011) http://www.state.gov/r/pa/ei/bgn/35761.htm. Accessed 21 Jan 2012
  31. Watt TA (1978) The biology of Holcus lanatus (Yorkshire fog) and its significance in grassland. Herbage Abs 48(6):195–204Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kristin Roos
    • 1
  • Jörg Bendix
    • 2
  • Giulia F. Curatola
    • 2
  • Julia Gawlik
    • 3
  • Andrés Gerique
    • 3
  • Ute Hamer
    • 4
  • Patrick Hildebrandt
    • 5
  • Thomas Knoke
    • 6
  • Hanna Meyer
    • 2
  • Perdita Pohle
    • 3
  • Karin Potthast
    • 7
  • Boris Thies
    • 2
  • Alexander Tischer
    • 7
  • Erwin Beck
    • 1
  1. 1.Department of Plant Physiology and Bayreuth Centre of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany
  2. 2.Laboratory of Climatology and Remote SensingUniversity of MarburgMarburgGermany
  3. 3.Institute of GeographyFriedrich-Alexander University of ErlangenErlangenGermany
  4. 4.Institute of Landscape EcologyUniversity of MuensterMuensterGermany
  5. 5.Institute of Forest Management, Center of Life and Food Sciences WeihenstephanTechnische Universität MünchenFreisingGermany
  6. 6.Institute of Silviculture, Center of Life and Food Sciences WeihenstephanTechnische Universität MünchenFreisingGermany
  7. 7.Institute of Soil Science and Site EcologyDresden University of TechnologyTharandtGermany

Personalised recommendations