Skip to main content

Mycorrhiza Networks Promote Biodiversity and Stabilize the Tropical Mountain Rain Forest Ecosystem: Perspectives for Understanding Complex Communities

  • Chapter
  • First Online:
Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador

Abstract

To better understand the mechanisms behind maintenance of the extraordinary plant and fungal diversity in tropical mountain forests we applied, for the first time, network theory to investigate the mycobiont–plant communities. We addressed three different mycorrhizal classes, arbuscular mycorrhizae of tropical trees, mycorrhizae of terrestrial and epiphytic Orchidaceae and cavendishioid mycorrhizae among Ericaceae and Sebacinales. We found significant nestedness (NODF) for arbuscular and orchid mycorrhizal networks. In accordance to previous simulations and verifications of species-rich, mutualistic plant–animal networks, we conclude that preferential attachment of new members to already existing links integrates and maintains rare species and stabilizes our species rich assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson G, Trejo Soto CA, Leonardo O (2011) The role of asymmetric interactions on the effect of habitat destruction in mutualistic networks. PLoS One 6:e21028

    Article  PubMed  CAS  Google Scholar 

  • Almeida-Neto M, Guimaraes P, Guimaraes PR Jr, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurements. Oikos 117:1227–1239

    Article  Google Scholar 

  • Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–382

    Article  Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Syst 38:567–593

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melián CL, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci 5:9383–9387

    Article  Google Scholar 

  • Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020

    Article  PubMed  CAS  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9

    Article  PubMed  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498

    Article  PubMed  CAS  Google Scholar 

  • Burgos E, Ceva H, Perazzo RP, Devoto M, Medan D, Zimmermann M, Delbue M (2007) Why nestedness in mutualistic networks? J Theor Biol 249:307–313

    Article  PubMed  Google Scholar 

  • Chagnon PL, Bradley RL, Klironomos JN (2012) Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. New Phytol 194:307–312

    Article  PubMed  Google Scholar 

  • Cruz D, Suárez JP, Kottke I, Piepenbring M, Oberwinkler F (2011) Defining species in Tulasnella by correlating morphology and nrDNA ITS-5.8S sequence data of basidiomata from a tropical Andean forest. Mycol Prog 10:229–238

    Article  Google Scholar 

  • Donatti CI, Guimaraes PR, Galetti M, Pizo MA, Marquitti FM, Dirzo R (2011) Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 14:773–781

    Article  PubMed  Google Scholar 

  • Fortuna MA, Bascompte J (2006) Habitat loss and the structure of plant-animal mutualistic networks. Ecol Lett 9:281–286

    Article  PubMed  Google Scholar 

  • Fortuna MA, Stouffer DB, Olesen JM, Jordano P, Mouillot D, Krasnov BR, Poulin R, Bascompte J (2010) Nestedness versus modularity in ecological networks: two sides of the same coin? J Anim Ecol 79:811–817

    PubMed  Google Scholar 

  • Frank B (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Deutsch Bot Ges 3:128–145; English translation in Mycorrhiza (2005) 15:267–275

    Google Scholar 

  • Fries A, Rollenbeck R, Göttlicher D, Nauß T, Homeier J, Peters T, Bendix J (2009) Thermal structure of a megadiverse mountain ecosystem in Southern Ecuador and its regionalization. Erdkunde 63:321–335

    Article  Google Scholar 

  • Fries A, Rollenbeck R, Nauß T, Peters T, Bendix J (2012) Near surface air humidity in a megadiverse mountain ecosystem in Southern Ecuador and its regionalization. Agric For Meteorol 152:17–30

    Article  Google Scholar 

  • Göker M, García-Blázquez G, Voglmayr H, Tellería MT, Martín MP (2009) Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS One 29:e6319

    Article  Google Scholar 

  • Gómez JM, Perfectti F, Jordano P (2011) The functional consequences of mutualistic network architecture. PLoS One 6:e16143

    Article  PubMed  Google Scholar 

  • Grime JP, Mackey JM, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422

    Article  Google Scholar 

  • Guimaraes PR Jr, Guimaraes P (2006) Improving the analysis of nestedness for large sets of matrices. Environ Model Softw 21:1512–1513

    Article  Google Scholar 

  • Günter S, Gonzalez P, Alvarez G, Aguirre N, Palomeque X, Haubrich F, Weber M (2009) Determinants for successful reforestation of abandoned pastures in the Andes: soil conditions and vegetation cover. For Ecol Manage 258:81–91

    Article  Google Scholar 

  • Haug I, Wubet T, Weiß M, Aguirre N, Weber M, Günter S, Kottke I (2010) Species-rich but distinct arbuscular mycorrhizal communities in reforestation plots on degraded pastures and in neighboring pristine tropical mountain rain forest. J Trop Ecol 51:125–148

    CAS  Google Scholar 

  • Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kitk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:38–47

    Article  Google Scholar 

  • Homeier J, Werner FA (2007) Spermatophyta checklist – Reserva Biológica San Francisco (Prov. Zamora-Chinchipe, S. Ecuador). In: Liede-Schumann S, Breckle S-W (eds) Provisional checklist of flora and fauna of San Francisco Valley and its surroundings. Ecotropical monographs, vol 4. Society for Tropical Ecology, pp 15–58

    Google Scholar 

  • Homeier J, Breckle S-W, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42:140–148

    Article  Google Scholar 

  • Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L, Dormann CF, Edwards F, Figueroa D, Jacob U, Jones JI, Lauridsen RB, Ledger ME, Lewis HM, Olesen JM, van Veen FJ, Woodward G (2009) Ecological networks – beyond food webs. J Anim Ecol 78:253–269

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Merckx V, Brys R, Tyteca D, Cammue BP, Honnay O, Lievens B (2011) Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytol 192:518–528

    Article  PubMed  Google Scholar 

  • Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolution networks of plant-animal interactions. Ecol Lett 6:69–81

    Article  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044):880–882

    Article  PubMed  CAS  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Kottke I, Hönig K (1998) Improvement of maintenance and autochthones mycorrhization of beech (Fagus sylvatica L.) and oak (Quercus robur L.) plantlets by pre-mycorrhization with Paxillus involutus (Batsch) Fr. In: Misra A (ed) Problems of wasteland development and role of microbes. AMIFM Publications, Bhubaneswar, pp 187–218

    Google Scholar 

  • Kottke I, Beck A, Haug I, Setaro S, Jeske V, Suárez JP, Pazmiño L, Preußing M, Nebel M, Oberwinkler F (2008) Mycorrhizal state and new and special features of mycorrhizae of trees, ericads, orchids, ferns and liverworts. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer Verlag, Berlin, pp 137–148

    Google Scholar 

  • Kottke I, Suárez JP, Herrera P, Cruz D, Bauer R, Haug I, Garnica S (2010) Atractiellomycetes belonging to the ‘rust’ lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids. Proc R Soc London B 277:1289–1296

    Article  Google Scholar 

  • Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse MA (2012) The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol Ecol 21:5098–5109

    Article  PubMed  Google Scholar 

  • Medan D, Perazzo RP, Devoto M, Burgos E, Zimmermann MG, Ceva H, Delbue AM (2007) Analysis and assembling of network structure in mutualistic systems. J Theor Biol 246:510–521

    Article  PubMed  Google Scholar 

  • Mello MA, Marquitti FM, Guimaraes PR Jr, Kalko EK, Jordano P, de Aguiar MA (2011) The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions. PLoS One 6:e17395

    Article  PubMed  CAS  Google Scholar 

  • Memmot J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc London B 271:2605–2611

    Article  Google Scholar 

  • Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M (2012) The network structure of plant-arbuscular mycorrhizal fungi. New Phytol 194:536–547

    Article  PubMed  CAS  Google Scholar 

  • Okuyama T, Holland JN (2008) Network structural properties mediate the stability of mutualistic communities. Ecol Lett 11:208–216

    Article  PubMed  Google Scholar 

  • Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci 104:19891–19896

    Article  PubMed  CAS  Google Scholar 

  • Ordoñez O, Lalama K (2006) Experiencias del manejo apícola en Uritusinga, Loja, Ecuador. Fundación Ecológica Arco Iris, PROBONA, Loja

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Peters T, Diertl KH, Gawlik J, Rankl M, Richter M (2010) Vascular plant diversity in natural and anthropogenic ecosystems in the Andes of Southern Ecuador. Mt Res Dev 30:344–352

    Article  Google Scholar 

  • Saavedra S, Reed-Tsochas F, Uzzi B (2009) A simple model of bipartite cooperation for ecological and organizational networks. Nature 457:463–466

    Article  PubMed  CAS  Google Scholar 

  • Scheublin TR, van Logtestijn RS, van der Heijden MG (2007) Presence and identity of arbuscular mycorrhizal fungi influence interactions between plant species. J Ecol 95:631–638

    Article  CAS  Google Scholar 

  • Schleuning M, Blüthgen N, Flörchinger M, Braun J, Schaefer HM, Böhning-Gaese K (2011) Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata. Ecology 92:26–36

    Article  PubMed  Google Scholar 

  • Setaro S, Kron K (2012) Neotropical and North American Vaccinioideae (Ericaceae) share their mycorrhizal Sebacinales – an indication for concerted migration? PLoS Currents: Tree of Life. doi:10.1371/currents.RRN1227

  • Setaro S, Oberwinkler F, Kottke I (2006a) Anatomy and ultrastructure of mycorrhizal associations of Neotropical Ericaceae. Mycol Prog 5:243–254

    Article  Google Scholar 

  • Setaro S, Weiß M, Oberwinkler F, Kottke I (2006b) Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365

    Article  PubMed  CAS  Google Scholar 

  • Setaro S, Suarez JP, Herrera P, Cruz D, Kottke I (2013) Distinct but closely related Sebacinales from mycorrhizae with co-existing Ericaceae and Orchidaceae in a neotropical mountain area. In: Varma A, Kost G, Oelmüller R (eds) Sebacinales. Forms, functions and biotechnological application. Springer, Berlin, pp 81–105

    Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San Diego

    Google Scholar 

  • Suárez JP, Weiß M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270

    Article  PubMed  Google Scholar 

  • Suárez JP, Weiß M, Abele A, Oberwinkler F, Kottke I (2008) Members of Sebacinales subgroup B form mycorrhizae with epiphytic orchids in a neotropical mountain rain forest. Mycol Prog 7:75–85

    Article  Google Scholar 

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    Article  PubMed  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Werner FA (2011) Reduced growth and survival of vascular epiphytes on isolated remnant trees in a recent tropical montane forest clear-cut. Basic Appl Ecol 12:172–181

    Article  Google Scholar 

  • Werner FA, Homeier J, Gradstein SR (2005) Diversity of vascular epiphytes on isolated remnant trees in the montane forest belt of Southern Ecuador. Ecotropica 11:21–40

    Google Scholar 

  • Zhang F, Hui C, Terblanche JS (2011) An interaction switch predicts the nested architecture of mutualistic networks. Ecol Lett 14:797–803

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for fruitful discussions with Pedro Jordano on network analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Kottke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kottke, I. et al. (2013). Mycorrhiza Networks Promote Biodiversity and Stabilize the Tropical Mountain Rain Forest Ecosystem: Perspectives for Understanding Complex Communities. In: Bendix, J., et al. Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador. Ecological Studies, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38137-9_14

Download citation

Publish with us

Policies and ethics