Skip to main content

Natural Landslides Which Impact Current Regulating Services: Environmental Preconditions and Modeling

  • Chapter
  • First Online:
Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador

Abstract

Recurrent landslide activity in the natural mountain forest is assumed to be a major factor for maintaining its high biodiversity. It is hypothesized that abiotic–biotic interactions are a prerequisite for natural landslides. A statistical model solely driven by topographic predictors can explain areas prone to landslides but also shows that other factors (e.g., geology, soil, climate, vegetation) than topography might play an important role to improve model performance. Thus, the chapter also shows approaches to derive spatial information on soil properties and wind stress as potential driving predictors for the model. Furthermore, it can be shown that even changes in the biogeochemical cycle and the regulation between nutrient input and biomass production might influence the risk of landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benner J, Vitousek PM, Ostertag R (2010) Nutrient cycling and nutrient limitation in torpical montane cloud forests. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. International hydrology series. Cambridge University Press, Cambridge, pp 90–100

    Google Scholar 

  • Böhner J, McCloy KR, Strobl J (2006) SAGA – analysis and modelling application. Göttinger Geographische Abhandlungen, vol 115. Geographisches Institut der Universität Göttingen

    Google Scholar 

  • Bräuning A, Homeier J, Cueva E, Beck E, Günter S (2008) Growth dynamics of trees in tropical mountain ecosystems. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador (Ecological Studies 198). Springer, Berlin, pp 291–302

    Chapter  Google Scholar 

  • Breiman L (2001) Random forests. Machine Learning 45:5–32

    Article  Google Scholar 

  • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5:853–862

    Article  Google Scholar 

  • Brown DJ, Clayton MK, McSweeney K (2004) Potential terrain controls on soil color, texture contrast and grain-size deposition for the original catena landscape in Uganda. Geoderma 122:51–72

    Article  Google Scholar 

  • Bussmann RW, Wilcke W, Richter M (2008) Landslides as important disturbance regimes causes and regeneration. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 319–330

    Google Scholar 

  • Chaplot V, Walter C, Curmi P (2000) Improving soil hydromorphy prediction according to DEM resolution and available pedological data. Geoderma 97:405–422

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Dislich C, Huth A (2012) Modelling the impact of shallow landslides on forest structure in tropical montane forests. Ecol Model 239:40–53

    Article  Google Scholar 

  • Fries A, Rollenbeck R, Göttlicher D, Nauß T, Homeier J, Peters T, Bendix J (2009) Thermal structure of a megadiverse Andean mountain ecosystem in southern Ecuador, and its regionalization. Erdkunde 63:321–335

    Article  Google Scholar 

  • Fries A, Rollenbeck R, Nauß T, Peters T, Bendix J (2012) Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization. Agric For Meteorol 152:17–30

    Article  Google Scholar 

  • Göttlicher D, Obregón A, Homeier J, Rollenbeck R, Nauß T, Bendix J (2009) Land cover classification in the Andes of southern Ecuador using Landsat ETM+ data as a basis for SVAT modelling. Int J Remote Sens 30:1867–1886

    Article  Google Scholar 

  • Grieve IC, Proctor J, Cousins SA (1990) Soil variation with altitude on volcan Barva, Costa Rica. Catena 17:525–534

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation. A system of quantitative pedology. Dover, New York

    Google Scholar 

  • Larsen MC, Torres-Sánchez AJ, Concepción IM (1999) Slopewash, surface runoff and fine-litter transport in forest and landslide scars in humid-tropical steeplands, Luquillo Experimental Forest, Puerto Rico. Earth Surf Process Landforms 24:481–502

    Article  Google Scholar 

  • Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 219–230

    Google Scholar 

  • Ließ M (2011) Soil-landscape modelling in an Andean mountain forest region in southern Ecuador. PhD Thesis, University of Bayreuth, Bayreuth

    Google Scholar 

  • Liess M, Glaser B, Huwe B (2009) Digital soil mapping in southern Ecuador. Erdkunde 63:309–319

    Article  Google Scholar 

  • Ließ M, Glaser B, Huwe B (2011) Functional soil-landscape modelling to estimate slope stability in a steep Andean mountain forest region. Geomorphology 132(3–4):287–299

    Article  Google Scholar 

  • Ließ M, Glaser B, Huwe B (2012) Uncertainty in the spatial prediction of soil texture – comparison of regression tree and random forest models. Geoderma 170:70–79

    Article  Google Scholar 

  • Marrs RH, Proctor J, Heaney A, Mountford MD (1988) Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J Ecol 76:466–482

    Article  Google Scholar 

  • Molino JF, Sabatier D (2001) Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294:1702–1704

    Article  PubMed  CAS  Google Scholar 

  • Moser G, Röderstein M, Soethe N, Hertel D, Leuschner C (2008) Altitudinal changes in stand structure and biomass allocaton of tropical mountain forests in relation to microclimate and soil chemistry. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 229–242

    Google Scholar 

  • Park SJ, Vlek PLG (2002) Environmental correlation of three-dimensional soil spatial variability: a comparison of three adaptive techniques. Geoderma 109:117–140

    Article  CAS  Google Scholar 

  • Rollenbeck R (2006) Variability of precipitation in the Reserva Biologica San Francisco/Southern Ecuador. Lyonia 9:43–51

    Google Scholar 

  • Rollenbeck R, Bendix J (2011) Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos Res 99:277–289

    Article  Google Scholar 

  • Roman L, Scatena FN, Bruijnzeel LA (2010) Global and local variations in tropical montane cloud forest soils. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. International hydrology series. Cambridge University Press, Cambridge, pp 77–89

    Google Scholar 

  • Roxburgh SH, Shea K, Wilson B (2004) The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology 85:359–371

    Article  Google Scholar 

  • Schrumpf M, Guggenberger G, Schubert C, Valarezo C, Zech W (2001) Tropical montane rain forest soils: development and nutrient status along an altitudinal gradient in the south Ecuadorian Andes. Die Erde 132:43–59

    Google Scholar 

  • Schuur EAG, Matson PA (2001) Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–442

    Article  Google Scholar 

  • Sheil D, Burslem DFRP (2003) Disturbing hypotheses in tropical forests. Trends Ecol Evol 18:18–26

    Article  Google Scholar 

  • Silver WL (1994) Is nutrient availability related to plant nutrient use in humid tropical forests? Oecologia 98:336–343

    Article  Google Scholar 

  • Soethe N, Lehmann J, Engels C (2006a) Root morphology and anchorage of six native tree species from a tropical montane forest and an elefin forest in Ecuador. Plant Soil 279:173–185

    Article  CAS  Google Scholar 

  • Soethe N, Lehmann J, Engels C (2006b) The vertical pattern of rooting and nutrient uptake at different altitudes of a south Ecuadorian montane forest. Plant Soil 286:287–299

    Article  CAS  Google Scholar 

  • Stoyan R (2000) Aktivität, Ursachen und Klassifikation der Rutschungen in San Francisco/Südecuador. Diploma Thesis, Friedrich-Alexander-Unversität Erlangen-Nürnberg

    Google Scholar 

  • Vorpahl P, Elsenbeer H, Märker M, Schröder B (2012) How can statistical models help to determine driving factors of landslides? Ecol Model 239:27–39. doi:10.1016/j.ecolmodel.2011.12.007

    Article  Google Scholar 

  • Weisser D (2003) A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function. Renew Energy 28:1803–1812

    Article  Google Scholar 

  • Wilcke W, Yasin S, Abramowski U, Valarezo C, Zech W (2002) Nutrient storage and turnover in organic layers under tropical montane rainforest in Ecuador. Eur J Soil Sci 53:15–27

    Article  CAS  Google Scholar 

  • Wilcke W, Valladarez H, Stoyan R, Yasin S, Valarezo C, Zech W (2003) Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. Catena 53:79–95

    Article  Google Scholar 

  • Wilcke W, Oelmann Y, Schmitt A, Valarezo C, Zech W, Homeier J (2008a) Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sci 171:220–230

    Article  CAS  Google Scholar 

  • Wilcke W, Yasin S, Schmitt A, Valarezo C, Zech W (2008b) Soils along the altitudinal transect and in catchments. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 75–85

    Google Scholar 

  • Wilcke W, Boy J, Goller R, Fleischbein K, Valarezo C, Zech W (2010) Effect of topography on soil fertility and water flow in an Ecaudorian lower montane forest. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud Forests, International hydrology series. Cambridge Academic Press, Cambridge, pp 402–409

    Google Scholar 

  • Winstral A, Marks D (2002) Simulating wind fields and snow redistribution using terrain based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol Process 16:3585–3603

    Article  Google Scholar 

  • Zhang G, Thomas C, Leclerc MY, Karipot A, Gholz HL, Binford M, Foken T (2007) On the effect of clearcuts on turbulence structure above a forest canopy. Theor Appl Climatol 88:133–137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Bendix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bendix, J. et al. (2013). Natural Landslides Which Impact Current Regulating Services: Environmental Preconditions and Modeling. In: Bendix, J., et al. Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador. Ecological Studies, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38137-9_12

Download citation

Publish with us

Policies and ethics