Natural Landslides Which Impact Current Regulating Services: Environmental Preconditions and Modeling

  • Jörg BendixEmail author
  • Claudia Dislich
  • Andreas Huth
  • Bernd Huwe
  • Mareike Ließ
  • Boris Schröder
  • Boris Thies
  • Peter Vorpahl
  • Julia Wagemann
  • Wolfgang Wilcke
Part of the Ecological Studies book series (ECOLSTUD, volume 221)


Recurrent landslide activity in the natural mountain forest is assumed to be a major factor for maintaining its high biodiversity. It is hypothesized that abiotic–biotic interactions are a prerequisite for natural landslides. A statistical model solely driven by topographic predictors can explain areas prone to landslides but also shows that other factors (e.g., geology, soil, climate, vegetation) than topography might play an important role to improve model performance. Thus, the chapter also shows approaches to derive spatial information on soil properties and wind stress as potential driving predictors for the model. Furthermore, it can be shown that even changes in the biogeochemical cycle and the regulation between nutrient input and biomass production might influence the risk of landslides.


Digital Elevation Model Landslide Susceptibility Landslide Occurrence Maximum Wind Speed Topographic Wetness Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Benner J, Vitousek PM, Ostertag R (2010) Nutrient cycling and nutrient limitation in torpical montane cloud forests. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. International hydrology series. Cambridge University Press, Cambridge, pp 90–100Google Scholar
  2. Böhner J, McCloy KR, Strobl J (2006) SAGA – analysis and modelling application. Göttinger Geographische Abhandlungen, vol 115. Geographisches Institut der Universität GöttingenGoogle Scholar
  3. Bräuning A, Homeier J, Cueva E, Beck E, Günter S (2008) Growth dynamics of trees in tropical mountain ecosystems. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador (Ecological Studies 198). Springer, Berlin, pp 291–302CrossRefGoogle Scholar
  4. Breiman L (2001) Random forests. Machine Learning 45:5–32CrossRefGoogle Scholar
  5. Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5:853–862CrossRefGoogle Scholar
  6. Brown DJ, Clayton MK, McSweeney K (2004) Potential terrain controls on soil color, texture contrast and grain-size deposition for the original catena landscape in Uganda. Geoderma 122:51–72CrossRefGoogle Scholar
  7. Bussmann RW, Wilcke W, Richter M (2008) Landslides as important disturbance regimes causes and regeneration. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 319–330Google Scholar
  8. Chaplot V, Walter C, Curmi P (2000) Improving soil hydromorphy prediction according to DEM resolution and available pedological data. Geoderma 97:405–422CrossRefGoogle Scholar
  9. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310PubMedCrossRefGoogle Scholar
  10. Dislich C, Huth A (2012) Modelling the impact of shallow landslides on forest structure in tropical montane forests. Ecol Model 239:40–53CrossRefGoogle Scholar
  11. Fries A, Rollenbeck R, Göttlicher D, Nauß T, Homeier J, Peters T, Bendix J (2009) Thermal structure of a megadiverse Andean mountain ecosystem in southern Ecuador, and its regionalization. Erdkunde 63:321–335CrossRefGoogle Scholar
  12. Fries A, Rollenbeck R, Nauß T, Peters T, Bendix J (2012) Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization. Agric For Meteorol 152:17–30CrossRefGoogle Scholar
  13. Göttlicher D, Obregón A, Homeier J, Rollenbeck R, Nauß T, Bendix J (2009) Land cover classification in the Andes of southern Ecuador using Landsat ETM+ data as a basis for SVAT modelling. Int J Remote Sens 30:1867–1886CrossRefGoogle Scholar
  14. Grieve IC, Proctor J, Cousins SA (1990) Soil variation with altitude on volcan Barva, Costa Rica. Catena 17:525–534CrossRefGoogle Scholar
  15. Jenny H (1941) Factors of soil formation. A system of quantitative pedology. Dover, New YorkGoogle Scholar
  16. Larsen MC, Torres-Sánchez AJ, Concepción IM (1999) Slopewash, surface runoff and fine-litter transport in forest and landslide scars in humid-tropical steeplands, Luquillo Experimental Forest, Puerto Rico. Earth Surf Process Landforms 24:481–502CrossRefGoogle Scholar
  17. Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 219–230Google Scholar
  18. Ließ M (2011) Soil-landscape modelling in an Andean mountain forest region in southern Ecuador. PhD Thesis, University of Bayreuth, BayreuthGoogle Scholar
  19. Liess M, Glaser B, Huwe B (2009) Digital soil mapping in southern Ecuador. Erdkunde 63:309–319CrossRefGoogle Scholar
  20. Ließ M, Glaser B, Huwe B (2011) Functional soil-landscape modelling to estimate slope stability in a steep Andean mountain forest region. Geomorphology 132(3–4):287–299CrossRefGoogle Scholar
  21. Ließ M, Glaser B, Huwe B (2012) Uncertainty in the spatial prediction of soil texture – comparison of regression tree and random forest models. Geoderma 170:70–79CrossRefGoogle Scholar
  22. Marrs RH, Proctor J, Heaney A, Mountford MD (1988) Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J Ecol 76:466–482CrossRefGoogle Scholar
  23. Molino JF, Sabatier D (2001) Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294:1702–1704PubMedCrossRefGoogle Scholar
  24. Moser G, Röderstein M, Soethe N, Hertel D, Leuschner C (2008) Altitudinal changes in stand structure and biomass allocaton of tropical mountain forests in relation to microclimate and soil chemistry. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 229–242Google Scholar
  25. Park SJ, Vlek PLG (2002) Environmental correlation of three-dimensional soil spatial variability: a comparison of three adaptive techniques. Geoderma 109:117–140CrossRefGoogle Scholar
  26. Rollenbeck R (2006) Variability of precipitation in the Reserva Biologica San Francisco/Southern Ecuador. Lyonia 9:43–51Google Scholar
  27. Rollenbeck R, Bendix J (2011) Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos Res 99:277–289CrossRefGoogle Scholar
  28. Roman L, Scatena FN, Bruijnzeel LA (2010) Global and local variations in tropical montane cloud forest soils. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. International hydrology series. Cambridge University Press, Cambridge, pp 77–89Google Scholar
  29. Roxburgh SH, Shea K, Wilson B (2004) The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology 85:359–371CrossRefGoogle Scholar
  30. Schrumpf M, Guggenberger G, Schubert C, Valarezo C, Zech W (2001) Tropical montane rain forest soils: development and nutrient status along an altitudinal gradient in the south Ecuadorian Andes. Die Erde 132:43–59Google Scholar
  31. Schuur EAG, Matson PA (2001) Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–442CrossRefGoogle Scholar
  32. Sheil D, Burslem DFRP (2003) Disturbing hypotheses in tropical forests. Trends Ecol Evol 18:18–26CrossRefGoogle Scholar
  33. Silver WL (1994) Is nutrient availability related to plant nutrient use in humid tropical forests? Oecologia 98:336–343CrossRefGoogle Scholar
  34. Soethe N, Lehmann J, Engels C (2006a) Root morphology and anchorage of six native tree species from a tropical montane forest and an elefin forest in Ecuador. Plant Soil 279:173–185CrossRefGoogle Scholar
  35. Soethe N, Lehmann J, Engels C (2006b) The vertical pattern of rooting and nutrient uptake at different altitudes of a south Ecuadorian montane forest. Plant Soil 286:287–299CrossRefGoogle Scholar
  36. Stoyan R (2000) Aktivität, Ursachen und Klassifikation der Rutschungen in San Francisco/Südecuador. Diploma Thesis, Friedrich-Alexander-Unversität Erlangen-NürnbergGoogle Scholar
  37. Vorpahl P, Elsenbeer H, Märker M, Schröder B (2012) How can statistical models help to determine driving factors of landslides? Ecol Model 239:27–39. doi: 10.1016/j.ecolmodel.2011.12.007 CrossRefGoogle Scholar
  38. Weisser D (2003) A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function. Renew Energy 28:1803–1812CrossRefGoogle Scholar
  39. Wilcke W, Yasin S, Abramowski U, Valarezo C, Zech W (2002) Nutrient storage and turnover in organic layers under tropical montane rainforest in Ecuador. Eur J Soil Sci 53:15–27CrossRefGoogle Scholar
  40. Wilcke W, Valladarez H, Stoyan R, Yasin S, Valarezo C, Zech W (2003) Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. Catena 53:79–95CrossRefGoogle Scholar
  41. Wilcke W, Oelmann Y, Schmitt A, Valarezo C, Zech W, Homeier J (2008a) Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sci 171:220–230CrossRefGoogle Scholar
  42. Wilcke W, Yasin S, Schmitt A, Valarezo C, Zech W (2008b) Soils along the altitudinal transect and in catchments. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 75–85Google Scholar
  43. Wilcke W, Boy J, Goller R, Fleischbein K, Valarezo C, Zech W (2010) Effect of topography on soil fertility and water flow in an Ecaudorian lower montane forest. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud Forests, International hydrology series. Cambridge Academic Press, Cambridge, pp 402–409Google Scholar
  44. Winstral A, Marks D (2002) Simulating wind fields and snow redistribution using terrain based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol Process 16:3585–3603CrossRefGoogle Scholar
  45. Zhang G, Thomas C, Leclerc MY, Karipot A, Gholz HL, Binford M, Foken T (2007) On the effect of clearcuts on turbulence structure above a forest canopy. Theor Appl Climatol 88:133–137CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jörg Bendix
    • 1
    Email author
  • Claudia Dislich
    • 2
  • Andreas Huth
    • 2
  • Bernd Huwe
    • 3
  • Mareike Ließ
    • 3
  • Boris Schröder
    • 4
  • Boris Thies
    • 1
  • Peter Vorpahl
    • 4
    • 5
  • Julia Wagemann
    • 1
  • Wolfgang Wilcke
    • 6
  1. 1.Faculty of Geography, Laboratory for Climatology and Remote SensingUniversity of MarburgMarburgGermany
  2. 2.Department of Ecological ModellingHelmholtz Centre for Environmental Research – UFZLeipzigGermany
  3. 3.Department of Soil PhysicsUniversity of BayreuthBayreuthGermany
  4. 4.Department of Ecology and Ecosystem ManagementTechnical University of MunichFreising-WeihenstephanGermany
  5. 5.Institute of Earth and Environmental ScienceUniversity of PotsdamPotsdam-GolmGermany
  6. 6.Geographic Institute of the University of Bern (GIUB)University of BernBernSwitzerland

Personalised recommendations