Homeostatic Control and the Smart Grid: Applying Lessons from Biology

Part of the Energy Systems book series (ENERGY)


Electric power grids in this country and abroad are undergoing revolutionary changes through the increased integration of electric power generation, delivery and consumption with computation, communications, and cyber security. Emerging out of these activities is a smart grid that includes new technologies ranging from microgrids capable of islanded operation to wind power generation and electric vehicle supply. The success of this massive endeavor will depend on large measure on the development of control methodologies that maintain homeostasis in the face of natural stresses, malfunctions and deliberate attacks. The goal of this chapter is to sketch out possible control strategies for the future smart grid based upon insights into how living systems deal with these same issues. This is a broad topic and the particular focus here will be on presenting a simple model of control by neural and innate immune systems that could be applied to operational security at substations and microgrids.


Operational security Innate immunity Neural control Multi-agent systems Substations Microgrids 


  1. Albert R, Albert I and Nakarado GL (2004) Structural vulnerability of the North American power grid. Phys Rev E 69:025103(R). doi: 10.1103/PhysRevE.69.025103
  2. Beckerman M (2005) Molecular and cellular signaling. Springer, New YorkGoogle Scholar
  3. Beckerman M (2009) Cellular signaling in health and disease. Springer, New YorkCrossRefGoogle Scholar
  4. Blalock JE (1989) A molecular-basis for bidirectional communication between the immune and neuro-endocrine systems. Physiol Rev 69:1–32Google Scholar
  5. Buse DP, Sun P, Wu QH, Fitch J (2003) Agent-based substation automation. IEEE Power Energy Mag 50–55. doi: 10.1109/MPAE.2003.1192026
  6. Carreras BA, Newman DE, Dobson I, Poole AB (2004) Evidence for self-organized criticality in a time series of electric power system blackouts. IEEE Trans Circuits Syst I 51:1733–1740. doi: 10.1109/TCSI.2004.834513 CrossRefGoogle Scholar
  7. Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837. doi: 10.1038/nri2873 CrossRefGoogle Scholar
  8. Davidson EM, McArthur SDJ, McDonald JR, Cumming T, Watt I (2006) Applying multi-agent system technology in practice: automated management and analysis of SCADA and digital fault recorder data. IEEE Trans Power Syst 21:559–567. doi: 10.1109/TPWRS.2006.873109 CrossRefGoogle Scholar
  9. Dimeas AL, Hatziargyriou ND (2005) Operation of a multiagent system for microgrid control. IEEE Trans Power Syst 20:1447–1455. doi: 10.1109/TPWRS.2005.852060 CrossRefGoogle Scholar
  10. Dobson I, Carreras BJ, Lynch VE, Newman DE (2007) Complex systems analysis of series of blackouts: Cascading failure, critical points and self-organization. Chaos 17(026103):1–13. doi: 10.1063/1.2737822 Google Scholar
  11. Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Nat Acad Sci USA 98:13763–13768. doi: 10.1073/pnas.231499798 CrossRefGoogle Scholar
  12. Ericsson GN (2010) Cyber security and power system communication—essential parts of a smart grid infrastructure. IEEE Trans Power Delivery 25:1501–1507. doi: 10.1109/TPWRD.2010.2046654 CrossRefGoogle Scholar
  13. Graham-Brown T (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B 84:308–319CrossRefGoogle Scholar
  14. IEEE Trans Power Syst (2004) Definition and classification of power system stability. 19:1387–1401. doi: 10.1109/TPWRS.2004.825981
  15. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots. Neural Networks 21:642–653. doi: 10.1016/j.neunet.2008.03.014 CrossRefGoogle Scholar
  16. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp Quant Biol 54:1–13CrossRefGoogle Scholar
  17. Jennings NR (2001) An agent-based approach for building complex software systems. Commun ACM 44:35–41. doi: 10.1145/367211.367250 CrossRefGoogle Scholar
  18. Jimeno J, Anduaga J, Oyarzabal J, de Muro AG (2011) Architecture of a microgrid energy management system. European Trans Electrical Power 21:1142–1158. doi: 0.1002/etep.443 CrossRefGoogle Scholar
  19. Li H, Rosenwald GW, Jung J, Liu C (2005) Strategic power infrastructure defense. Proc IEEE 93:918–933. doi: 10.1109/JPROC.2005.847260 CrossRefGoogle Scholar
  20. Liu Y, Ning P, Reiter MK (2011) False data injection attacks against state estimation in electric power grids. ACM Trans Info Syst Sec (TISSEC) 14:Art 13. doi: 10.1145/1952982.1952995
  21. Lopes JAP, Moreira CL, Madureira AG (2006) Defining control strategies for microgrids islanded operations. IEEE Trans Power Syst 21:916–924. doi: 10.1109/TPWRS.2006.873018 CrossRefGoogle Scholar
  22. Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574. doi: 10.1038/nrn1949 CrossRefGoogle Scholar
  23. Martinon F, Burns K, Tschopp J (2002) The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-\(\beta \). Mol Cell 10:417–426. doi: 10.1016/S1097-2765(02)0059-3 Google Scholar
  24. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045. doi: 10.1146/annurev.iy.12.040194.005015 CrossRefGoogle Scholar
  25. McArthur SDJ, Davidson EM, Catterson VM, Dimeas AL, Hatziargyriou ND, Ponci F, Funabashi T (2007a) Multi-agent systems for power engineering applications—Part 1: concepts, approaches, and technical challenges. IEEE Trans Power Systems 22:1743–1752. doi: 10.1109/TPWRS.2007.908471
  26. McArthur SDJ, Davidson EM, Catterson VM, Dimeas AL, Hatziargyriou ND, Ponci F, Funabashi T (2007b) Multi-agent systems for power engineering applications—Part 2: technologies, standards, and tools for building multi-agent systems. IEEE Trans Power Systems 22:1753–1759. doi: 10.1109/TPWRS.2007.908472
  27. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969. doi: 10.1038/nri2448 CrossRefGoogle Scholar
  28. Nagata T, Sasaki H (2002) A multi-agent approach to power system restoration. IEEE Trans Power Syst 17:457–462. doi: TPWRS.2002.1007918 CrossRefGoogle Scholar
  29. Oyarzabal J, Jimeno J, Ruela J, Engler A and Hardt C (2005) Agent based microgrid management system. In: IEEE conference future power system, pp. 6–11. doi: 10.1109/FPS.2005.204230
  30. Pipattanasomporn M, Feroze H and Rahman S (2009) Multi-agent systems in a distributed smart grid: Design and implementation. In: Proceedings of IEEE PES power system conference and exposition (PSCE’09), pp. 1–8. doi: 10.1109/PSCE.2009.4840087
  31. Prinz AA, Bucher D, Marder E (2004) Similar network properties from disparate circuit parameters. Nat Neurosci 7:1345–1352. doi: 10.1038/nn1352 CrossRefGoogle Scholar
  32. Sachtjen ML, Carreras BA, Lynch VE (2000) Disturbances in a power transmission system. Phys Rev E 61:4877–4882. doi: 10.1103/PhysRevE.61.4877 CrossRefGoogle Scholar
  33. Schweppe FC, Tabors RD, Kirtley JL, Outhred HR, Pickel FH and Cox AJ (1980) Homeostatic utility control. IEEE Trans Power Apparatus Syst PAS-99:1151–1163. doi: 10.1109/TPAS.1980.319745 Google Scholar
  34. Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6:318–328. doi: 10.1038/nri1810 CrossRefGoogle Scholar
  35. Sun JR, Singh V, Kajino-Sakamoto R, Aballay A (2011) Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science 332:729–732. doi: 10.1126/Science.1203411 CrossRefGoogle Scholar
  36. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859. doi: 10.1038/nature01321 CrossRefGoogle Scholar
  37. Wang HF, Li H, Chen H (2003) Coordinated secondary voltage control to eliminate voltage violations in power system contingencies. IEEE Trans Power Syst 18:588–595. doi: 10.1109/TPWRS.2003.810896 CrossRefGoogle Scholar
  38. Wang H, Yu M, Ochani M, Amella CA, Tanovic M et al (2003) Nicotine acetylcholine receptor \(\alpha \)7 subunit is an essential regulator of inflammation. Nature 421:384–388. doi: 10.1038/nature01339 Google Scholar
  39. Wei D, Lu Y, Jafari M, Skare PM, Rohde K (2011) Protecting smart grid automation systems against cyberattacks. IEEE Trans Smart Grid 2:782–795. doi: 10.1109/TSG.2011.2159999 CrossRefGoogle Scholar
  40. Wooldridge M (1997) Agent-based software engineering. IEE Proc Softw Eng 144:26–37. doi: 10.1049/ip-sen:19971026 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Information Technology DivisionOak RidgeUSA

Personalised recommendations