SMT-Based Analysis of Biological Computation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7871)


Synthetic biology focuses on the re-engineering of living organisms for useful purposes while DNA computing targets the construction of therapeutics and computational circuits directly from DNA strands. The complexity of biological systems is a major engineering challenge and their modeling relies on a number of diverse formalisms. Moreover, many applications are “mission-critical” (e.g. as recognized by NASA’s Synthetic Biology Initiative) and require robustness which is difficult to obtain. The ability to formally specify desired behavior and perform automated computational analysis of system models can help address these challenges, but today there are no unifying scalable analysis frameworks capable of dealing with this complexity.

In this work, we study pertinent problems and modeling formalisms for DNA computing and synthetic biology and describe how they can be formalized and encoded to allow analysis using Satisfiability Modulo Theories (SMT). This work highlights biological engineering as a domain that can benefit extensively from the application of formal methods. It provides a step towards the use of such methods in computational design frameworks for biology and is part of a more general effort towards the formalization of biology and the study of biological computation.


Model Check Synthetic Biology Boolean Network Bound Model Check Probabilistic Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Satisfiability modulo theories competition,
  2. 2.
    Z34bio at rise4fun - software engineering tools from MSR (2012),
  3. 3.
    Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  4. 4.
    Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429(6990), 423–429 (2004)CrossRefGoogle Scholar
  5. 5.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 325(1), 25–44 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9(1), 67–103 (2002)CrossRefGoogle Scholar
  8. 8.
    de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: A novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs. SIGPLAN Not. 46, 62–73 (2011)CrossRefGoogle Scholar
  11. 11.
    Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Horn, F., Jackson, R.: General mass action kinetics. Archive for Rational Mechanics and Analysis 47(2) (1972)Google Scholar
  13. 13.
    Jovanović, D., de Moura, L.: Solving Non-linear Arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Lakin, M.R., Phillips, A.: Modelling, simulating and verifying turing-powerful strand displacement systems. In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937, pp. 130–144. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Lakin, M.R., Parker, D., Cardelli, L., Kwiatkowska, M., Phillips, A.: Design and analysis of DNA strand displacement devices using probabilistic model checking. Journal of the Royal Society, Interface 9(72), 1470–1485 (2012)CrossRefGoogle Scholar
  16. 16.
    Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)CrossRefGoogle Scholar
  17. 17.
    Langhoff, S., Rothschild, L., Cumbers, J., Paavola, C., Worden, P.: Workshop Report on What are the Potential Roles for Synthetic Biology in NASA’s Mission? Technical report (2012)Google Scholar
  18. 18.
    Milicevic, A., Kugler, H.: Model checking using SMT and theory of lists. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 282–297. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Pedersen, M., Phillips, A.: Towards programming languages for genetic engineering of living cells. J. R. Soc. Interface 6(suppl. 4), S437–S450 (2009)Google Scholar
  20. 20.
    Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. Journal of the Royal Society, Interface 6(suppl. 4), S419–S436 (2009)Google Scholar
  21. 21.
    Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE (1977)Google Scholar
  22. 22.
    Purnick, P.E., Weiss, R.: The second wave of synthetic biology: from modules to systems. Nature Reviews. Molecular Cell Biology 10(6) (2009)Google Scholar
  23. 23.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRefGoogle Scholar
  24. 24.
    Samal, A., Jain, S.: The regulatory network of E. coli metabolism as a boolean dynamical system exhibits both homeostasis and flexibility of response. BMC Systems Biology 2(1), 21 (2008)CrossRefGoogle Scholar
  25. 25.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRefGoogle Scholar
  26. 26.
    Soliman, S.: Finding minimal P/T-invariants as a CSP. In: Proceedings of the fourth Workshop on Constraint Based Methods for Bioinformatics WCB, vol. 8 (2008)Google Scholar
  27. 27.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences of the United States of America 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  28. 28.
    Wintersteiger, C., Hamadi, Y., de Moura, L.: Efficiently solving quantified bit-vector formulas. In: FMCAD, pp. 239–246 (2010)Google Scholar
  29. 29.
    Yaman, F., Bhatia, S., Adler, A., Densmore, D., Beal, J.: Automated Selection of Synthetic Biology Parts for Genetic Regulatory Networks. ACS Synthetic Biology 1(8), 332–344 (2012)CrossRefGoogle Scholar
  30. 30.
    Yordanov, B., Belta, C.: A formal verification approach to the design of synthetic gene networks. In: IEEE Conference on Decision and Control and European Control Conference, pp. 4873–4878. IEEE (2011)Google Scholar
  31. 31.
    Zhang, F., Rodriguez, S., Keasling, J.D.: Metabolic engineering of microbial pathways for advanced biofuels production. Current Opinion in Biotechnology 22(6), 775–783 (2011)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Microsoft ResearchCambridgeUK

Personalised recommendations