Skip to main content

Automated Segmentation and Anatomical Labeling of Abdominal Arteries Based on Multi-organ Segmentation from Contrast-Enhanced CT Data

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 7761)

Abstract

A fully automated method is described for segmentation and anatomical labeling of the abdominal arteries from contrast-enhanced CT data of the upper abdomen. By assuming that the regions of the organs and aorta have already been automatically segmented, the problem is formulated as extracting and selecting the optimal paths between the organ and aorta regions based on a basic anatomical constraint that arteries supplying blood to an organ consist of tree structures whose root nodes are located in the aorta region and leaf nodes in the organ region. Using the constraint, the proposed method solves both of artery segmentation and anatomical labeling. In addition, the method is robust against topological variability of the branching patterns. Experimental results using 10 datasets demonstrate that the proposed method was effectively applied to several kinds of the abdominal arteries, which include the hepatic, splenic, and renal arteries. The average F-measure, which is a normalized accuracy measure taking both false positives and true negatives into account, was 0.89 for the proposed and 0.74 for the previous methods. The method could also effectively deal with topological variability of the hepatic and renal arteries.

Keywords

  • Renal Artery
  • Hepatic Artery
  • Leaf Node
  • Candidate Region
  • Celiac Artery

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-38079-2_9
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-38079-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mori, K., Hasegawa, J., Suenaga, Y., et al.: Automated anatomical labeling of the bronchial branch and its application to the virtual bronchoscopy system. IEEE Trans. Med. Imaging 19(2), 103–114 (2000)

    CrossRef  Google Scholar 

  2. Mori, K., Oda, M., Egusa, T., Jiang, Z., Kitasaka, T., Fujiwara, M., Misawa, K.: Automated nomenclature of upper abdominal arteries for displaying anatomical names on virtual laparoscopic images. In: Liao, H., Edwards, P.J.E., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 353–362. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  3. Bogunović, H., Pozo, J.M., Cárdenes, R., Frangi, A.F.: Anatomical labeling of the anterior circulation of the circle of willis using maximum a posteriori classification. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 330–337. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  4. Shimizu, A., Ohno, R., Ikegami, T., et al.: Segmentation of multiple organs in non-contrast 3D abdominal CT images. Int. J. Comput. Assist. Radiol. Surg. 2(3), 135–142 (2007)

    CrossRef  Google Scholar 

  5. Okada, T., Yokota, K., Hori, M., Nakamoto, M., Nakamura, H., Sato, Y.: Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 502–509. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  6. Linguraru, M.G., Pura, J.A., Chowdhury, A.S., Summers, R.M.: Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 89–96. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  7. Okada, T., Linguraru, M.G., Yoshida, Y., Hori, M., Summers, R.M., Chen, Y.-W., Tomiyama, N., Sato, Y.: Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging. LNCS, vol. 7029, pp. 173–180. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  8. Suzuki, Y., Okada, T., Hori, M., et al.: Automated anatomical labeling of abdominal arteries from ct data based on optimal path finding between segmented organ and aorta regions: A robust method against topological variability. Int. J. CARS 7(suppl. 1), s47–s48 (2012)

    Google Scholar 

  9. Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    MathSciNet  CrossRef  Google Scholar 

  10. Sato, Y., Nakajima, S., Shiraga, N., et al.: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2(2), 143–168 (1998)

    CrossRef  Google Scholar 

  11. Wink, O., Niessen, W.J., Viergever, M.A.: Multiscale vessel tracking. IEEE Trans. Med. Imaging 23(1), 130–133 (2004)

    CrossRef  Google Scholar 

  12. Glocker, G., Komodakis, N., Tziritas, G., et al.: Dense Image Registration through MRFs and Efficient Linear Programming. Med. Image Anal. 12(6), 731–741 (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suzuki, Y. et al. (2013). Automated Segmentation and Anatomical Labeling of Abdominal Arteries Based on Multi-organ Segmentation from Contrast-Enhanced CT Data. In: , et al. Clinical Image-Based Procedures. From Planning to Intervention. CLIP 2012. Lecture Notes in Computer Science, vol 7761. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38079-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38079-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38078-5

  • Online ISBN: 978-3-642-38079-2

  • eBook Packages: Computer ScienceComputer Science (R0)