Skip to main content

Combining Instance Information to Classify Bags

  • Conference paper
Multiple Classifier Systems (MCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7872))

Included in the following conference series:

Abstract

Multiple Instance Learning is concerned with learning from sets (bags) of feature vectors (instances), where the bags are labeled, but the instances are not. One of the ways to classify bags is using a (dis)similarity space, where each bag is represented by its dissimilarities to certain prototypes, such as bags or instances from the training set. The instance-based representation preserves the most information, but is very high-dimensional, whereas the bag-based representation has lower dimensionality, but risks throwing away important information. We show a connection between these representations and propose an alternative representation based on combining classifiers, which can potentially combine the advantages of the other methods. The performances of the ensemble classifiers are disappointing, but require further investigation. The bag-based representation preserves sufficient information to classify bags correctly and produces the best results on several datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, S., Hofmann, T., Tsochantaridis, I.: Multiple instance learning with generalized support vector machines. In: National Conference on Artificial Intelligence, pp. 943–944 (2002)

    Google Scholar 

  2. Bhattacharyya, C., Grate, L., Rizki, A., Radisky, D., Molina, F., Jordan, M., Bissell, M., Mian, I.: Simultaneous classification and relevant feature identification in high-dimensional spaces: application to molecular profiling data. Signal Processing 83(4), 729–743 (2003)

    Article  MATH  Google Scholar 

  3. Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X., Raich, R., Hadley, S., Hadley, A., Betts, M.: Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach. J. Acoust. Soc. of America 131, 4640 (2012)

    Article  Google Scholar 

  4. Chang, C., Lin, C.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 27 (2011)

    Article  Google Scholar 

  5. Chen, Y., Bi, J., Wang, J.: Miles: Multiple-instance learning via embedded instance selection. Pattern Analysis and Machine Intelligence 28(12), 1931–1947 (2006)

    Article  Google Scholar 

  6. Cheplygina, V., Tax, D., Loog, M.: Class-dependent dissimilarity measures for multiple instance learning. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 602–610. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  Google Scholar 

  8. Dietterich, T., Lathrop, R., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89(1-2), 31–71 (1997)

    Article  MATH  Google Scholar 

  9. Duin, R.P.W., Tax, D.M.J.: Experiments with classifier combining rules. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 16–29. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Foulds, J., Frank, E.: A review of multi-instance learning assumptions. Knowledge Engineering Review 25(1), 1 (2010)

    Article  Google Scholar 

  11. Foulds, J., Frank, E.: Revisiting multiple-instance learning via embedded instance selection. In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 300–310. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Ho, T.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  13. Huang, J., Ling, C.: Using auc and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering 17(3), 299–310 (2005)

    Article  Google Scholar 

  14. Kittler, J.: Combining classifiers: A theoretical framework. Pattern Analysis & Applications 1(1), 18–27 (1998)

    Article  MathSciNet  Google Scholar 

  15. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning 2(4), 285–318 (1988)

    Google Scholar 

  16. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Advances in Neural Information Processing Systems, pp. 570–576. Morgan Kaufmann Publishers (1998)

    Google Scholar 

  17. Pękalska, E., Duin, R.P.W.: On combining dissimilarity representations. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 359–368. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Pękalska, E., Duin, R.P.W.: The dissimilarity representation for pattern recognition: foundations and applications, vol. 64. World Scientific Pub. Co. Inc. (2005)

    Google Scholar 

  19. Pękalska, E., Duin, R.P.W., Paclík, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recognition 39(2), 189–208 (2006)

    Article  MATH  Google Scholar 

  20. Tax, D.M.J., Duin, R.P.W.: Learning curves for the analysis of multiple instance classifiers. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR&SPR 2008. LNCS, vol. 5342, pp. 724–733. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Tax, D.M.J., Loog, M., Duin, R.P.W., Cheplygina, V., Lee, W.-J.: Bag dissimilarities for multiple instance learning. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005, pp. 222–234. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Weidmann, N., Frank, E., Pfahringer, B.: A two-level learning method for generalized multi-instance problems. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 468–479. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Zhou, Z., Jiang, K., Li, M.: Multi-instance learning based web mining. Applied Intelligence 22(2), 135–147 (2005)

    Article  Google Scholar 

  24. Zhou, Z., Sun, Y., Li, Y.: Multi-instance learning by treating instances as non-iid samples. In: Int. Conf. on Machine Learning, pp. 1249–1256. ACM (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheplygina, V., Tax, D.M.J., Loog, M. (2013). Combining Instance Information to Classify Bags. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38067-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38066-2

  • Online ISBN: 978-3-642-38067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics