Advertisement

Can Diversity amongst Learners Improve Online Object Tracking?

  • Georg Nebehay
  • Walter Chibamu
  • Peter R. Lewis
  • Arjun Chandra
  • Roman Pflugfelder
  • Xin Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7872)

Abstract

We present a novel analysis of the state of the art in object tracking with respect to diversity found in its main component, an ensemble classifier that is updated in an online manner. We employ established measures for diversity and performance from the rich literature on ensemble classification and online learning, and present a detailed evaluation of diversity and performance on benchmark sequences in order to gain an insight into how the tracking performance can be improved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. Pattern Analysis and Machine Intelligence 33(8) (August 2011)Google Scholar
  2. 2.
    Bertolami, R., Bunke, H.: Diversity analysis for ensembles of word sequence recognisers. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR&SPR 2006. LNCS, vol. 4109, pp. 677–686. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Brown, G., Kuncheva, L.I.: “Good” and “Bad” Diversity in Majority Vote Ensembles. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 124–133. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: A survey and categorisation. Journal of Information Fusion 6, 5–20 (2005)CrossRefGoogle Scholar
  7. 7.
    Chen, H., Yao, X.: Multiobjective neural network ensembles based on regularized negative correlation learning. Knowledge and Data Engineering 22(12) (2010)Google Scholar
  8. 8.
    Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. Pattern Analysis and Machine Intelligence 27(10), 1631–1643 (2005)CrossRefGoogle Scholar
  9. 9.
    Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Dietterich, T.G., Bakiri, G.: Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research 2 (1995)Google Scholar
  11. 11.
    Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. International Journal of Computer Vision 88(2), 303–338 (2010)CrossRefGoogle Scholar
  12. 12.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Frinken, V., Peter, T., Fischer, A., Bunke, H., Do, T.-M.-T., Artieres, T.: Improved handwriting recognition by combining two forms of hidden markov models and a recurrent neural network. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 189–196. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Grabner, H., Bischof, H.: On-line boosting and vision. In: Computer Vision and Pattern Recognition, vol. 1 (2006)Google Scholar
  15. 15.
    Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Ho, T.K.: The random subspace method for constructing decision forests. Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)CrossRefGoogle Scholar
  17. 17.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-Learning-detection. Pattern Analysis and Machine Intelligence 34(7), 1409–1422 (2012)CrossRefGoogle Scholar
  18. 18.
    Kuncheva, L.I., Whitaker, C.J.: Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Machine Learning 51(2), 181–207 (2003)zbMATHCrossRefGoogle Scholar
  19. 19.
    Levy, N., Wolf, L.: Minimal correlation classification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 29–42. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Yao, X., Higuchi, T.: Evolutionary ensembles with negative correlation learning. Evolutionary Computation 4(4), 380–387 (2000)CrossRefGoogle Scholar
  21. 21.
    Minku, L.L., White, A.P., Yao, X.: The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift. Knowledge and Data Engineering 22(5), 730–742 (2010)CrossRefGoogle Scholar
  22. 22.
    Oza, N.C.: Online Bagging and Boosting. Systems, Man and Cybernetics (2005)Google Scholar
  23. 23.
    Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. Pattern Analysis and Machine Intelligence 32(3), 448–461 (2010)CrossRefGoogle Scholar
  24. 24.
    Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line random forests. In: International Conference on Computer Vision Workshops (2009)Google Scholar
  25. 25.
    Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST: Parallel robust online simple tracking. In: Computer Vision and Pattern Recognition (2010)Google Scholar
  26. 26.
    Visentini, I., Kittler, J., Foresti, G.L.: Diversity-based classifier selection for adaptive object tracking. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 438–447. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Yu, Q., Dinh, T.B., Medioni, G.: Online tracking and reacquisition using co-trained generative and discriminative trackers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Georg Nebehay
    • 1
  • Walter Chibamu
    • 2
  • Peter R. Lewis
    • 2
  • Arjun Chandra
    • 3
  • Roman Pflugfelder
    • 1
  • Xin Yao
    • 2
  1. 1.Austrian Institute of TechnologyAustria
  2. 2.CERCIA, School of Computer ScienceUniversity of BirminghamUK
  3. 3.Department of InformaticsUniversity of OsloNorway

Personalised recommendations