In this paper we analyze probabilistic argumentation frameworks PAF, defined as an extension of Dung abstract framework in which each argument n is asserted with a probability p n and where an argumentation semantics is used to compute arguments’ status. We start by extending recent definitions of PAF removing the hypothesis of arguments independence, extending the computation to preferred semantics and defining the distribution of various probabilities induced over arguments acceptability status. We then prove some basic properties linking grounded and preferred PAF and we describe the first algorithm to compute the probability of acceptance of each argument. We end our work with an application of PAF to legal reasoning.


Argumentation Theory Semantics Probabilistic Reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Claudette, C., Caroline, D., Lagasquie-Schiex, M.C.: Acceptability semantics accounting for strength of attacks in argumentation. In: 19th ECAI, Lisbon, Portugal, pp. 995–996 (2010)Google Scholar
  2. 2.
    Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Dung, P., Thang, P.: Towards (Probabilistic) Argumentation for Jury-based Dispute Resolution. In: COMMA 2010, pp. 171–182. IOS Press, Amsterdam (2010)Google Scholar
  4. 4.
    Li, H., Oren, N., Norman, T.J.: Probabilistic Argumentation Frameworks. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 1–16. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Grabmair, M., Gordon, T., Walton, D.: Probabilistic Semantics for the Carneades Argument Model Using Bayesian Networks. In: Baroni, P., et al. (eds.) Proc. of COMMA 2010, pp. 255–266. IOS Press, Amsterdam (2010)Google Scholar
  6. 6.
    Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics.  Knowledge Eng. Review 26(4), 365–410 (2011)CrossRefGoogle Scholar
  7. 7.
    Barringer, H., Gabbay, D., Woods, J.: Temporal dynamics of support and attack networks: From argumentation to zoology. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 59–98. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Pollock, J.L.: Defeasible reasoning with variable degrees of justification. Artificial Intelligence 133(1-2), 233–282 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dunne, P., et al.: Inconsistency Tolerance in Weighted Argument Systems. In: Proceedings of the Eighth Joint Conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2009, pp. 851–858. ACM Press (2009)Google Scholar
  10. 10.
    Martinez, D.C., Garcia, A.J.: An abstract argumentation framework with varied-strength attacks. In: Proc. of KR, pp. 135–143 (2008)Google Scholar
  11. 11.
    Hunter, A.: A probabilistic approach to modeling uncertain logical arguments. International Journal of Approximate Reasoning 54(1), 47–81 (2013)CrossRefGoogle Scholar
  12. 12.
    Thimm, M.: Probabilistic Semantics for Abstract Argumentation. In: Proceedings of 20th European Conference of Artificial Intelligence, pp. 750–755. IOS Press (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pierpaolo Dondio
    • 1
  1. 1.School of ComputingDublin Institute of TechnologyDublinIreland

Personalised recommendations