Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 642 Accesses

Abstract

Potassium is especially crucial in modulating the activity of muscles and nerves, cells of which have specialized ion channels for transporting potassium. Normal body function extremely depends on the regulation of potassium concentrations inside the ion channels within a certain range. For life science, undoubtedly, it is significant and challenging to study and imitate these processes happening in living organisms with a convenient artificial system. In this chapter, I introduce a novel biomimetic nanochannel system which has an ion concentration effect that provides a nonlinear response to potassium ion at the concentration ranging from 0 to 1500 μM. This new phenomenon is caused by the G-quadruplex DNA conformational change with a positive correlation with ion concentration. In this work, G-quadruplex DNA was immobilized onto a synthetic nanochannel, which undergoes a potassium-responsive conformational change and then induces the change in the effective channel size. The responsive ability of this system can be regulated by the stability of G-quadruplex (G4) structure through adjusting potassium concentration. The situation of the grafting G-quadruplex DNA on a single nanochannel can closely imitate the in vivo condition because the G-rich telomere overhang is attached to the chromosome. Therefore, this artificial system could promote a potential to conveniently study biomolecule conformational change in confined space by the current measurement, which is significantly different from the nanopore sequencing. Moreover, such a system may also potentially spark further experimental and theoretical efforts to simulate the process of ion transport in living organisms and can be further generalized to other more complicated functional molecules for the exploitation of novel bio-inspired intelligent nanochannel machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hou X, Guo W, Xia F, Nie FQ, Dong H, Tian Y, Wen LP, Wang L, Cao LX, Yang Y, Xue JM, Song YL, Wang YG, Liu DS, Jiang L (2009) A biomimetic potassium responsive nanochannel: G-Quadruplex DNA conformational switching in a synthetic nanopore. J Am Chem Soc 131(22):7800–7805. doi:10.1021/Ja901574c

    Article  CAS  Google Scholar 

  2. Apel P (2001) Track etching technique in membrane technology. Radiat Meas 34(1–6):559–566. doi:10.1016/s1350-4487(01)00228-1

    Article  CAS  Google Scholar 

  3. Harrell CC, Kohli P, Siwy Z, Martin CR (2004) DNA—Nanotube artificial ion channels. J Am Chem Soc 126(48):15646–15647. doi:10.1021/ja044948v

    Article  CAS  Google Scholar 

  4. Kohli P, Harrell CC, Cao ZH, Gasparac R, Tan WH, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305(5686):984–986. doi:10.1126/science.1100024

    Article  CAS  Google Scholar 

  5. Schmuhl R, van den Berg A, Blank DHA, ten Elshof JE (2006) Surfactant-modulated switching of molecular transport in nanometer-sized pores of membrane gates. Angew Chem Int Edit 45(20):3341–3345. doi:10.1002/anie.200504579

    Article  CAS  Google Scholar 

  6. Nilsson J, Lee JRI, Ratto TV, Letant SE (2006) Localized functionalization of single nanopores. Adv Mater 18(4):427–431. doi:10.1002/adma.200501991

    Article  CAS  Google Scholar 

  7. Iqbal SM, Akin D, Bashir R (2007) Solid-state nanopore channels with DNA selectivity. Nat Nanotechnol 2(4):243–248. doi:10.1038/nnano.2007.78

    Article  CAS  Google Scholar 

  8. Xia F, Guo W, Mao YD, Hou X, Xue JM, Xia HW, Wang L, Song YL, Ji H, Qi OY, Wang YG, Jiang L (2008) Gating of single synthetic nanopores by proton-driven DNA molecular motors. J Am Chem Soc 130(26):8345–8350. doi:10.1021/Ja800266p

    Article  CAS  Google Scholar 

  9. Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O (2008) Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. facile incorporation of biorecognition elements into nanoconfined geometries. J Am Chem Soc 130(48):16351–16357. doi:10.1021/ja8071258

    Article  CAS  Google Scholar 

  10. Ali M, Ramirez P, Mafe S, Neumann R, Ensinger W (2009) A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 3(3):603–608. doi:10.1021/nn900039f

    Article  CAS  Google Scholar 

  11. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes. J Am Chem Soc 131(6):2070–2071. doi:10.1021/ja8086104

    Article  CAS  Google Scholar 

  12. Parkinson GN, Lee MPH, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417(6891):876–880. doi:10.1038/nature755

    Article  CAS  Google Scholar 

  13. Patel DJ (2002) Structural biology—a molecular propeller. Nature 417(6891):807–808. doi:10.1038/417807a

    Article  CAS  Google Scholar 

  14. Davis JT (2004) G-quartets 40 years later: From 5’-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Edit 43(6):668–698. doi:10.1002/anie.200300589

    Article  CAS  Google Scholar 

  15. Dittmer WU, Reuter A, Simmel FC (2004) A DNA-based machine that can cyclically bind and release thrombin. Angew Chem Int Edit 43(27):3550–3553. doi:10.1002/anie.200353537

    Article  CAS  Google Scholar 

  16. Alberti P, Bourdoncle A, Sacca B, Lacroix L, Mergny J-L (2006) DNA nanomachines and nanostructures involving quadruplexes. Org Biomol Chem 4(18):3383–3391. doi:10.1039/b605739j

    Article  CAS  Google Scholar 

  17. Maizels N (2006) Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat Struct Mol Biol 13(12):1055–1059. doi:10.1038/nsmb1168

    Article  CAS  Google Scholar 

  18. Monchaud D, Yang P, Lacroix L, Teulade-Fichou M-P, Mergny J-L (2008) A metal-mediated conformational switch controls G-quadruplex binding affinity. Angew Chem Int Edit 47(26):4858–4861. doi:10.1002/anie.200800468

    Article  CAS  Google Scholar 

  19. Smargiasso N, Rosu F, Hsia W, Colson P, Baker ES, Bowers MT, De Pauw E, Gabelica V (2008) G-quadruplex DNA assemblies: loop length, cation identity, and multimer formation. J Am Chem Soc 130(31):10208–10216. doi:10.1021/ja801535e

    Article  CAS  Google Scholar 

  20. Domene C, Klein ML, Branduardi D, Gervasio FL, Parrinello M (2008) Conformational changes and gating at the selectivity filter of potassium channels. J Am Chem Soc 130(29):9474–9480. doi:10.1021/ja801792g

    Article  CAS  Google Scholar 

  21. Zhao Y, Kan ZY, Zeng ZX, Hao YH, Chen H, Tan Z (2004) Determining the folding and unfolding rate constants of nucleic acids by biosensor. Application to telomere G-quadruplex. J Am Chem Soc 126 (41):13255–13264. doi:10.1021/ja048398c

    Google Scholar 

  22. Phan AT, Kuryavyi V, Luu KN, Patel DJ (2007) Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res 35(19):6517–6525. doi:10.1093/nar/gkm706

    Article  CAS  Google Scholar 

  23. Lane AN, Chaires JB, Gray RD, Trent JO (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36(17):5482–5515. doi:10.1093/nar/gkn517

    Article  CAS  Google Scholar 

  24. Forman SL, Fettinger JC, Pieraccini S, Gottareli G, Davis JT (2000) Toward artificial ion channels: A lipophilic G-quadruplex. J Am Chem Soc 122(17):4060–4067. doi:10.1021/ja9925148

    Article  CAS  Google Scholar 

  25. Kaucher MS, Harrell WA, Davis JT (2006) A unimolecular G-quadruplex that functions as a synthetic transmembrane Na+ transporter. J Am Chem Soc 128(1):38–39. doi:10.1021/ja056888e

    Article  CAS  Google Scholar 

  26. Sakai N, Kamikawa Y, Nishii M, Matsuoka T, Kato T, Matile S (2006) Dendritic folate rosettes as ion channels in lipid bilayers. J Am Chem Soc 128(7):2218–2219. doi:10.1021/ja058157k

    Article  CAS  Google Scholar 

  27. Lee MPH, Parkinson GN, Hazel P, Neidle S (2007) Observation of the coexistence of sodium and calcium ions in a DNA G-quadruplex ion channel. J Am Chem Soc 129(33):10106–10107. doi:10.1021/ja0740869

    Article  CAS  Google Scholar 

  28. Hennig A, Matile S (2008) Detection of the activity of ion channels and pores by circular dichroism spectroscopy: G-quartets as functional CD probes within chirogenic vesicles. Chirality 20(9):932–937. doi:10.1002/chir.20526

    Article  CAS  Google Scholar 

  29. Ma L, Melegari M, Colombini M, Davis JT (2008) Large and stable transmembrane pores from guanosine-bile acid conjugates. J Am Chem Soc 130(10):2938–2939. doi:10.1021/ja7110702

    Article  CAS  Google Scholar 

  30. Ueyama H, Takagi M, Takenaka S (2002) A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation. J Am Chem Soc 124 (48):14286–14287. doi:10.1021/ja026892f

    Google Scholar 

  31. He F, Tang YL, Wang S, Li YL, Zhu DB (2005) Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform for homogeneous potassium detection. J Am Chem Soc 127(35):12343–12346. doi:10.1021/ja051507i

    Article  CAS  Google Scholar 

  32. He F, Tang YL, Yu MH, Feng F, An LL, Sun H, Wang S, Li YL, Zhu DB, Bazan GC (2006) Quadruplex-to-duplex transition of G-rich oligonucleotides probed by cationic water-soluble conjugated polyelectrolytes. J Am Chem Soc 128(21):6764–6765. doi:10.1021/ja058075w

    Article  CAS  Google Scholar 

  33. Huang C-C, Chang H-T (2008) Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine. Chem Commun 12:1461–1463. doi:10.1039/b718752a

    Article  Google Scholar 

  34. Phan AT, Mergny JL (2002) Human telomeric DNA: G-quadruplex, i-motif and watson-crick double helix. Nucleic Acids Res 30(21):4618–4625. doi:10.1093/nar/gkf597

    Article  CAS  Google Scholar 

  35. Sen D, Gilbert W (1990) A sodium-potassium switch in the formation of 4-stranded G4-DNA. Nature 344(6265):410–414. doi:10.1038/344410a0

    Article  CAS  Google Scholar 

  36. Apel PY, Korchev YE, Siwy Z, Spohr R, Yoshida M (2001) Diode-like single-ion track membrane prepared by electro-stopping. Nucl Instrum Meth Phys Res Sect B Beam Interact Mater Atoms 184(3):337–346. doi:10.1016/s0168-583x(01)00722-4

    Article  CAS  Google Scholar 

  37. Siwy Z, Apel P, Baur D, Dobrev DD, Korchev YE, Neumann R, Spohr R, Trautmann C, Voss KO (2003) Preparation of synthetic nanopores with transport properties analogous to biological channels. Surf Sci 532:1061–1066. doi:10.1016/s0039-6028(03)00448-5

    Article  Google Scholar 

  38. Harrell CC, Siwy ZS, Martin CR (2006) Conical nanopore membranes: Controlling the nanopore shape. Small 2(2):194–198. doi:10.1002/smll.200500196

    Article  CAS  Google Scholar 

  39. Wharton JE, Jin P, Sexton LT, Horne LP, Sherrill SA, Mino WK, Martin CR (2007) A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors. Small 3(8):1424–1430. doi:10.1002/smll.200700106

    Article  CAS  Google Scholar 

  40. Xu Y, Noguchi Y, Sugiyama H (2006) The new models of the human telomere d AGGG(TTAGGG)(3) in K+ solution. Bioorg Med Chem 14 (16):5584–5591. doi:10.1016/j.bmc.2006.04.033

    Google Scholar 

  41. Siwy Z, Fulinski A (2002) Fabrication of a synthetic nanopore ion pump. Phys Rev Lett 89 (19). doi:198103 10.1103/PhysRevLett.89.198103

  42. Kumar S, Chakarvarti SK (2003) On the preparation and asymmetric electric transport behavior of conical channels in polyethylene terepthalate. Radiat Meas 36(1–6):757–760. doi:10.1016/s1350-4487(03)00241-5

    Article  CAS  Google Scholar 

  43. Siwy Z, Apel P, Dobrev D, Neumann R, Spohr R, Trautmann C, Voss K (2003) Ion transport through asymmetric nanopores prepared by ion track etching. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 208:143–148. doi:10.1016/s0168-583x(03)00884-x

    Article  CAS  Google Scholar 

  44. Schiedt B, Healy K, Morrison AP, Neumann R, Siwy Z (2005) Transport of ions and biomolecules through single asymmetric nanopores in polymer films. Nucl Instrum Meth Phys Res Sect B Beam Interact Mater Atoms 236:109–116. doi:10.1016/j.nimb.2005.03.265

    Article  CAS  Google Scholar 

  45. Siwy Z, Kosinska ID, Fulinski A, Martin CR (2005) Asymmetric diffusion through synthetic nanopores. Phys Rev Lett 94(4). doi:10.1103/PhysRevLett.94.048102

  46. Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16(6):735–746. doi:10.1002/adfm.200500471

    Article  CAS  Google Scholar 

  47. Powell MR, Sullivan M, Vlassiouk I, Constantin D, Sudre O, Martens CC, Eisenberg RS, Siwy ZS (2008) Nanoprecipitation-assisted ion current oscillations. Nat Nanotechnol 3(1):51–57. doi:10.1038/nnano.2007.420

    Article  CAS  Google Scholar 

  48. Siwy Z, Heins E, Harrell CC, Kohli P, Martin CR (2004) Conical-nanotube ion-current rectifiers: the role of surface charge. J Am Chem Soc 126(35):10850–10851. doi:10.1021/ja047675c

    Article  CAS  Google Scholar 

  49. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153. doi:10.1038/nbt.1495

    Article  CAS  Google Scholar 

  50. Choi Y, Baker LA, Hillebrenner H, Martin CR (2006) Biosensing with conically shaped nanopores and nanotubes. Phys Chem Chem Phys 8(43):4976–4988. doi:10.1039/b607360c

    Article  CAS  Google Scholar 

  51. Martin CR, Siwy ZS (2007) Learning nature’s way: biosensing with synthetic nanopores. Science 317(5836):331–332. doi:10.1126/science.1146126

    Article  CAS  Google Scholar 

  52. Huh D, Mills KL, Zhu X, Burns MA, Thouless MD, Takayama S (2007) Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat Mater 6(6):424–428. doi:10.1038/nmat1907

    Article  CAS  Google Scholar 

  53. Savariar EN, Krishnamoorthy K, Thayumanavan S (2008) Molecular discrimination inside polymer nanotubules. Nat Nanotechnol 3(2):112–117. doi:10.1038/nnano.2008.6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Hou .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hou, X. (2013). Ions Responsive Asymmetric Conical Shaped Single Nanochannel. In: Bio-inspired Asymmetric Design and Building of Biomimetic Smart Single Nanochannels. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38050-1_2

Download citation

Publish with us

Policies and ethics