Skip to main content

Operational Amplifier RC Low-Pass Filter

  • Chapter
Analog Filters in Nanometer CMOS

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 45))

  • 2285 Accesses

Abstract

Several applications pose challenges for wireless receivers due to close blockers in the frequency spectrum. This requires amplifiers and filters with a high linearity. Due to the challenges of the nanometer hell of physics concerning design of operational amplifiers, new circuit architectures will be investigated. In fact, it will turn out that the low supply voltage of nanometer CMOS circuits is the most limiting factor to achieve a good linearity and a large dynamic range. A high-voltage operational amplifier finally will show the best performance in a filter-mixer combination. In addition, 1/f noise will turn out to reduce the choice of usable mixer topologies considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A. Abidi, Direct-conversion radio transceivers for digital communications. IEEE J. Solid-State Circuits 30(12), 1399–1410 (1995)

    Article  Google Scholar 

  2. H.F. Achigui, C.J.B. Fayomi, M. Sawan, 1-V DTMOS-based class-AB operational amplifier: implementation and experimental results. IEEE J. Solid-State Circuits 41(11), 2440–2448 (2006)

    Article  Google Scholar 

  3. R. Bestak, Evolution of mobile networks, in International Conference on Systems, Signals and Image Processing (2008), pp. 29–32

    Google Scholar 

  4. J.M. Carrillo, G. Torelli, R. Perez-Aloe, J.F. Duque-Carrillo, 1-V rail-to-rail CMOS OpAmp with improved bulk-driven input stage. IEEE J. Solid-State Circuits 42(3), 508–517 (2007)

    Article  Google Scholar 

  5. C.-L. Chen, Y.-C. Chang, Self-biased cross-coupled low-cost fully-differential CMOS operational amplifier. Electron. Lett. 41(9), 512–514 (2005)

    Article  MathSciNet  Google Scholar 

  6. S. D’Amico, V. Giannini, A. Baschirotto, A 4th-order active-Gm-RC reconfigurable (UMTS/WLAN) filter. IEEE J. Solid-State Circuits 41(7), 1630–1637 (2006)

    Article  Google Scholar 

  7. S. D’Amico, M. Conta, A. Baschirotto, A 4.1 mW 10 MHz fourth-order source-follower-based continuous-time filter with 79 dB DR. IEEE J. Solid-State Circuits 41(12), 2713–2719 (2006)

    Article  Google Scholar 

  8. M. De Matteis, S. D’Amico, V. Giannini, A. Baschirotto, A 550 mV 8 dBm IIP3 4th order analog base band filter for WLAN receivers, in Proc. European Solid-State Circuits Conference (2007), pp. 504–507

    Google Scholar 

  9. M. De Matteis, S. D’Amico, P. Andriulo, G. Cocciolo, A. Baschirotto, A 4th-order CMOS 65 nm wideband low-power analog filter for wireless receivers, in IEEE International Conference on Electronics, Circuits, and Systems (2009), pp. 191–194

    Google Scholar 

  10. S.C. dela Cruz, M.-G.T. delos Reyes, T.C. Gaffud, T.V. Abaya, M.T.A. Gusad, M.D. Rosales, Design and implementation of operational amplifiers with programmable characteristics in a 90 nm CMOS process, in European Conference on Circuit Theory and Design (2009), pp. 209–212

    Chapter  Google Scholar 

  11. J.-A. Diaz-Madrid, H. Neubauer, G. Domenech-Asensi, R. Ruiz, Comparative analysis of two operational amplifier topologies for a 40 MS/s 12-bit pipelined ADC in 0.35 μm CMOS, in IEEE International Conference on Integrated Circuit Design and Technology and Tutorial (2008), pp. 121–124

    Chapter  Google Scholar 

  12. M. Elmala, B. Carlton, R. Bishop, K. Soumyanath, A highly linear filter and VGA chain with novel DC-offset correction in 90 nm digital CMOS process, in Symposium on VLSI Circuits Digest of Technical Papers (2005), pp. 302–303

    Google Scholar 

  13. M.M. Farhad, S. Mirzakuchaki, A second-order Gm-C continuous time tilter in mobile radio receiver architecture. Int. Conf. Educ. Technol. Comput. 5, V5-170–V5-173 (2010)

    Google Scholar 

  14. D. Gangopadhyay, T.K. Bhattacharyya, A 2.3 GHz gm-boosted high swing class-ab ultra-wide bandwidth operational amplifier in 0.18 μm CMOS, in IEEE International Midwest Symposium on Circuits and Systems (2010), pp. 713–716

    Google Scholar 

  15. N. Ghittori, A. Vigna, P. Malcovati, S. D’Amico, A. Baschirotto, 1.2 V low-power multi-mode DAC+filter blocks for reconfigurable (WLAN/UMTS, WLAN/bluetooth) transmitters. IEEE J. Solid-State Circuits 41(9), 1970–1982 (2006)

    Article  Google Scholar 

  16. P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, New York, 2001)

    Google Scholar 

  17. J. Harrison, N. Weste, 350 MHz opamp-RC filter in 0.18 μm CMOS. Electron. Lett. 38(6), 259–260 (2002)

    Article  Google Scholar 

  18. B. Hernes, T. Sæther, Design Criteria for Low Distortion in Feedback Opamp Circuits (Kluwer Academic, Dordrecht, 2003)

    Google Scholar 

  19. B. Hernes, W. Sansen, Distortion in single-, two- and three-stage amplifiers. IEEE Trans. Circuits Syst. I, Regul. Pap. 52(5), 846–856 (2005)

    Article  Google Scholar 

  20. F.N. Hooge, 1/f noise sources. IEEE Trans. Electron Devices 41(11), 1926–1935 (1994)

    Article  Google Scholar 

  21. V.V. Ivanov, I.M. Filanovsky, Operational Amplifier Speed and Improvement (Kluwer Academic, Dordrecht, 2004)

    Google Scholar 

  22. J. Koh, J.-E. Lee, C.-D. Suh, H.-T. Kim, A 1/f-noise reduction architecture for an operational amplifier in a 0.13 μm standard digital CMOS technology, in IEEE Asian Solid-State Circuits Conference (2006), pp. 179–182

    Google Scholar 

  23. M. Kornfeld, G. May, DVB-H and IP datacast—broadcast to handheld devices. IEEE Trans. Broadcast. 53(1), 161–170 (2007)

    Article  Google Scholar 

  24. Z. Li, J. Ma, M. Yu, Y. Ye, Low-noise operational amplifier design with current driving bulk in 0.25 μm CMOS technology. Int. Conf. ASIC 2, 630–634 (2005)

    Google Scholar 

  25. W. Li, L. Xia, Y. Huang, Z. Hong, A 0.13 μm CMOS UWB receiver front-end using passive mixer, in IEEE Asia Pacific Conference on Circuits and Systems (2008), pp. 288–291

    Google Scholar 

  26. B. Lipka, U. Kleine, Design of a cascoded operational amplifier with high gain, in Proc. Mixed Design of Integrated Circuits and Systems (2007), pp. 260–261

    Google Scholar 

  27. T.-Y. Lo, C.-C. Hung, M. Ismail, A wide tuning range Gm-C filter for multi-mode CMOS direct-conversion wireless receivers. IEEE J. Solid-State Circuits 44(9), 2515–2524 (2009)

    Article  Google Scholar 

  28. H. Maarefi, A. Parsa, H. Hatamkhani, D. Shiri, A wide swing 1.5 V fully differential opamp using a rail-to-rail analog CMFB circuit. Midwest Symp. Circuits Syst. 1, 105–108 (2002)

    Google Scholar 

  29. Motorola, Inc. Long Term Evolution (LTE) (2007). White Paper

    Google Scholar 

  30. G. Palumbo, S. Pennisi, Design methodology and advances in nested-Miller compensation. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(7), 893–903 (2002)

    Article  Google Scholar 

  31. Z. Pan, P. Jiang, L. Zhang, C. Mao, Low flicker noise and high linearity passive mixer in 0.18 μm CMOS for direct conversion receiver, in Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (2009), pp. 21–24

    Chapter  Google Scholar 

  32. V.Y. Potanin, E.E. Potanina, High-voltage-tolerant power supply in a low-voltage CMOS technology. IEEE Int. Symp. Circuits Syst. Proc. 1, 393–396 (2004)

    Google Scholar 

  33. J. Rapeli, UMTS—a path to 3rd generation mobile communications of the 21st century, in IEEE International Conference on Personal Wireless Communications (1996), pp. 58– 67

    Google Scholar 

  34. W.M.C. Sansen, Analog Design Essentials (Springer, Dordrecht, 2006)

    Google Scholar 

  35. F. Schlögl, H. Zimmermann, Opamp with 106 dB DC gain in 120 nm digital CMOS, in European Solid-State Circuits Conference (2003), pp. 381–384

    Google Scholar 

  36. F. Schlögl, H. Zimmermann, 1.5 GHz OPAMP in 120 nm digital CMOS, in European Solid-State Circuits Conference (2004), pp. 239–242

    Chapter  Google Scholar 

  37. F. Schlögl, H. Dietrich, H. Zimmermann, 120 nm CMOS operational amplifier with high gain down to ±0.3 V supply, in IEEE International Systems-on-Chip Conference (2003), pp. 121–124

    Chapter  Google Scholar 

  38. F. Schlögl, H. Dietrich, H. Zimmermann, High-gain high-speed operational amplifier in digital 120 nm CMOS, in IEEE International SOC Conference (2004), pp. 316–319

    Google Scholar 

  39. B. Shem-Tov, M. Kozak, E.G. Friedman, A high-speed CMOS opamp design technique using negative Miller capacitance, in IEEE International Conference on Electronics, Circuits and Systems (2004), pp. 623–626

    Google Scholar 

  40. M.-H. Shen, Y.-S. Wu, G.-H. Ke, P.-C. Huang, A 0.7 V CMOS operational transconductance amplifier with bulk-driven technique, in International SoC Design Conference (2010), pp. 392–395

    Google Scholar 

  41. G.P. Singh, R.B. Salem, High-voltage-tolerant power I/0 buffers with low-voltage CMOS process. IEEE J. Solid-States Circuits 34(11), 1512–1525 (1999)

    Article  Google Scholar 

  42. U. Tieze, C. Schenk, Halbleiter Schaltungstechnik (Springer, Berlin, 2002)

    Google Scholar 

  43. H. Uhrmann, H. Zimmermann, A fully differential operational amplifier for a low-pass filter in a DVB-H receiver, in Proc. Mixed Design of Integrated Circuits and Systems (2009), pp. 197–200

    Google Scholar 

  44. H. Uhrmann, H. Zimmermann, A first-order operational amplifier RC low-pass filter for DVB-H, in Proc. Austrochip (2010), pp. 182–185

    Google Scholar 

  45. H. Uhrmann, F. Schlögl, K. Schweiger, H. Zimmermann, A 1 GHz-GBW operational amplifier for DVB-H receivers in 65 nm CMOS, in Proc. International Symposium on Design and Diagnostics of Electronic Circuits and Systems (2009), pp. 182–185

    Google Scholar 

  46. H. Uhrmann, L. Dörrer, F. Kuttner, K. Schweiger, H. Zimmermann, A mixer-filter combination of a direct conversion receiver for DVB-H applications in 65 nm CMOS, in Proc. Design and Diagnostics of Electronic Circuits and Systems (2010), pp. 209–212

    Chapter  Google Scholar 

  47. V.C. Vincence, C. Galup-Montoro, M.C. Schneider, Low-voltage class AB operational amplifier, in Symposium on Integrated Circuits and Systems Design (2001), pp. 207–211

    Chapter  Google Scholar 

  48. Z. Wu, F. Rui, Z. Zhi-Yong, C. Wei-Dong, Design of a rail-to-rail constant-gm CMOS operational amplifier. World Congress Comput. Sci. Inf. Eng. 6, 198–201 (2009)

    Google Scholar 

  49. W. Yan, H. Zimmermann, A 120 nm CMOS fully differential rail-to-rail I/O opamp with highly constant signal behavior, in IEEE International SOC Conference (2006), pp. 3–6

    Google Scholar 

  50. W. Yan, H. Zimmermann, Speed enhancement and linearity analysis for a rail-to-rail input opamp in 120 nm CMOS, in Proc. Mixed Design of Integrated Circuits and Systems (2007), pp. 344–348

    Google Scholar 

  51. W. Yan, R. Kolm, H. Zimmermann, A low-voltage low-power fully differential rail-to-rail input/output opamp in 65 nm CMOS, in IEEE International Symposium on Circuits and Systems (2008), pp. 2274–2277

    Google Scholar 

  52. W. Yan, R. Kolm, H. Zimmermann, Efficient four-stage frequency compensation for low-voltage amplifiers, in IEEE International Symposium on Circuits and Systems (2008), pp. 2278–2281

    Google Scholar 

  53. U. Yodprasit, C.C. Enz, A 1.5 V 75 dB dynamic range third-order Gm-C filter integrated in a 0.18 μm standard digital CMOS process. IEEE J. Solid-State Circuits 38(7), 1189–1197 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uhrmann, H., Kolm, R., Zimmermann, H. (2014). Operational Amplifier RC Low-Pass Filter. In: Analog Filters in Nanometer CMOS. Springer Series in Advanced Microelectronics, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38013-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38013-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38012-9

  • Online ISBN: 978-3-642-38013-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics