Selenium and Cancer: A Story that Should not be Forgotten-Insights from Genomics

  • Catherine Méplan
  • John HeskethEmail author
Conference paper
Part of the Cancer Treatment and Research book series (CTAR, volume 159)


Selenium (Se) is an essential micronutrient that is incorporated into selenoproteins. Although epidemiological studies suggest that low Se intake is associated with increased risk of various cancers, the results of supplementation trials have been confusing. These conflicting results may be due to different baseline Se status and/or genetic factors. In addition, mechanistic links between Se intake, selenoproteins and carcinogenesis are not clear. In this article, we discuss the functional significance of single-nucleotide polymorphisms (SNP) in selenoprotein genes and the evidence as to whether or not they influence risk of colorectal, prostate, lung or breast cancers. Both in vitro and in vivo studies have shown that a small number of SNPs in genes encoding glutathione peroxidases 1 and 4, selenoprotein P, selenoprotein S and 15-kDa selenoprotein have functional consequences. Data from case–control studies suggest that a variant at codon 198 in glutathione peroxidase 1 influences the effect of Se status on prostate cancer and risk, and it has also been associated with breast cancer and lung cancer risk, whereas variants in glutathione peroxidase 4, selenoprotein P and selenoprotein S may influence the risk of colorectal cancer. In addition, the results of gene microarray (transcriptomic) studies have identified novel selenoprotein biomarkers of Se status and novel downstream Se-targeted pathways. The work highlights the need to take baseline Se status and genetic factors into account in the design of future intervention trials.


SNP Transcriptomics Selenoproteins Micronutrient Colorectal Cancer Prostate Cancer 



Single-nucleotide polymorphisms


Glutathione peroxidase


Thioredoxin reductase




Selenocysteine insertion sequence




Selenoprotein P


Colorectal cancer


Genome-wide association studies


Mammalian target of rapamycin



CM is supported by the Biotechnology and Biological Sciences Research Council (grant BB/H011471/1). Work in JEH’s laboratory has been supported by Biotechnology and Biological Sciences Research Council, Food Standards Agency, Wellcome Trust, European Union, World Cancer Research Fund and Newcastle Healthcare Charity.


  1. 1.
    Fairweather-Tait SJ, BaoY Broadley MR et al (2011) Selenium in human health and disease. Antiox Red Sig 14:1337–1383CrossRefGoogle Scholar
  2. 2.
    Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268PubMedCrossRefGoogle Scholar
  3. 3.
    Whanger PD (2004) Selenium and its relationship to cancer: an update dagger. Br J Nutr 91:11–28PubMedCrossRefGoogle Scholar
  4. 4.
    Shamberger RJ, Frost DV (1969) Possible protective effect of selenium against human cancer. Can Med Assoc J 104:82–84Google Scholar
  5. 5.
    Duffield-Lillico AJ, Reid ME, Turnbull BW et al (2002) Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the nutritional prevention of cancer trial. Cancer Epidemiol Biomarkers Prev 11:630–639PubMedGoogle Scholar
  6. 6.
    Qiao YL, Dawsey SM, Kamangar F et al (2009) Total and cancer mortality after supplementation with vitamins and minerals: follow-up of the Linxian general population nutrition intervention trial. J Natl Cancer Inst 101:507–518PubMedCrossRefGoogle Scholar
  7. 7.
    Lippman SM, Klein EA, Goodman PJ et al (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 301:39–51PubMedCrossRefGoogle Scholar
  8. 8.
    Dunn BK, Taylor PR (2012) Prostate cancer prevention and the selenium and vitamin E cancer prevention trial (SELECT): a selenium perspective. In: Hatfield D, Berry MJ, Gladyshev VN (eds) Selenium: its molecular biology and role in human health, 3rd edn. Springer, New YorkGoogle Scholar
  9. 9.
    Laclaustra M, Navas-Acien A, Stranges S et al (2009) Serum selenium concentrations and diabetes in U.S. adults: national health and nutrition examination survey (NHANES) 2003–2004. Environ Health Perspect 117:1409–1413PubMedGoogle Scholar
  10. 10.
    Hesketh J (2008) Nutrigenomics and selenium: gene expression patterns, physiological targets, and genetics. Annu Rev Nutr 28:157–177PubMedCrossRefGoogle Scholar
  11. 11.
    Hesketh J, Méplan C (2011) Transcriptomics and functional genetic polymorphisms as biomarkers of micronutrient function: focus on selenium as an exemplar. Proc Nutr Soc epub ahead of printGoogle Scholar
  12. 12.
    Hesketh J, Wybranska I, Dommels Y, King M, Elliott R, Pico C, Keijer J (2006) Nutrient-gene interactions in benefit-risk analysis. Br J Nutr 95(6):1232–1236PubMedCrossRefGoogle Scholar
  13. 13.
    Méplan C (2011) Trace elements and ageing, a genomic perspective using selenium as an example. J Trace Elem Med Biol 25:S11–S16PubMedCrossRefGoogle Scholar
  14. 14.
    Bellinger FP, Raman AV, Reeves MA et al (2009) Regulation and function of selenoproteins in human disease. Biochem J 422:11–22PubMedCrossRefGoogle Scholar
  15. 15.
    Papp LV, Holmgren A, Khanna KK (2010) Selenium and selenoproteins in health and disease. Antioxid Redox Signal 12:793–795PubMedCrossRefGoogle Scholar
  16. 16.
    Aachmann FL, Fomenko DE, Soragni A et al (2007) Solution structure of selenoprotein W and NMR analysis of its interaction with 14–3-3 proteins. J Biol Chem 282:37036–37044PubMedCrossRefGoogle Scholar
  17. 17.
    Dikiy A, Novoselov SV, Fomenko DE et al (2007) SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 46:6871–6882PubMedCrossRefGoogle Scholar
  18. 18.
    Reeves MA, Bellinger FP, Berry MJ (2010) The neuroprotective functions of selenoprotein M and its role in cytosolic calcium regulation. Antioxid Redox Signal 12:809–818PubMedCrossRefGoogle Scholar
  19. 19.
    Burk RF, Hill KE (2009) Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta 1790:1441–1447PubMedCrossRefGoogle Scholar
  20. 20.
    Méplan C, Nicol F, Burtle BT et al (2009) Relative abundance of selenoprotein P isoforms in human plasma depends on genotype, se intake, and cancer status. Antioxid Redox Signal 11:2631–2640PubMedCrossRefGoogle Scholar
  21. 21.
    Hill KE, Zhou J, McMahan WJ et al (2003) Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 278:13640–13646PubMedCrossRefGoogle Scholar
  22. 22.
    Schomburg L, Schweizer U, Holtmann B et al (2003) Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem J 370:397–402PubMedCrossRefGoogle Scholar
  23. 23.
    Al-Taie OH, Seufert J, Mork H et al (2002) A complex DNA-repeat structure within the Selenoprotein P promoter contains a functionally relevant polymorphism and is genetically unstable under conditions of mismatch repair deficiency. Eur J Hum Genet 10:499–504PubMedCrossRefGoogle Scholar
  24. 24.
    Bermano G, Nicol F, Dyer JA et al (1995) Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem J 311:425–430PubMedGoogle Scholar
  25. 25.
    Wingler K, Bocher M, Flohe L et al (1999) mRNA stability and selenocysteine insertion sequence efficiency rank gastrointestinal glutathione peroxidase high in the hierarchy of selenoproteins. Eur J Biochem 259:149–157PubMedCrossRefGoogle Scholar
  26. 26.
    Pagmantidis V, Bermano G, Villette S et al (2005) Effects of Se-depletion on glutathione peroxidase and selenoprotein W gene expression in the colon. FEBS Lett 579:792–796PubMedCrossRefGoogle Scholar
  27. 27.
    Kipp A, Banning A, van Schothorst EM et al (2009) Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to limited selenium intake in mouse colon. Mol Nutr Food Res 53:1561–1572PubMedCrossRefGoogle Scholar
  28. 28.
    Bermano G, Arthur JR, Hesketh JE (1996) Role of the 3′ untranslated region in the regulation of cytosolic glutathione peroxidase and phospholipid-hydroperoxide glutathione peroxidase gene expression by selenium supply. Biochem J 320:891–895PubMedGoogle Scholar
  29. 29.
    Méplan C, Crosley LK, Nicol F et al (2008) Functional effects of a common single-nucleotide polymorphism (GPX4c718t) in the glutathione peroxidase 4 gene: interaction with sex. Am J Clin Nut 87:1019–1027Google Scholar
  30. 30.
    Curran JE, Jowett JB, Elliott KS et al (2005) Genetic variation in selenoprotein S influences inflammatory response. Nat Genet 37:1234–1241PubMedCrossRefGoogle Scholar
  31. 31.
    Voetsch B, Jin RC, Bierl C et al (2007) Promoter polymorphisms in the plasma glutathione peroxidase (GPx-3) gene: a novel risk factor for arterial ischemic stroke among young adults and children. Stroke 38:41–49PubMedCrossRefGoogle Scholar
  32. 32.
    Forsberg L, de Faire U, Marklund SL et al (2000) Phenotype determination of a common Pro-Leu polymorphism in human glutathione peroxidase 1. Blood Cells Mol Dis 26:423–426PubMedCrossRefGoogle Scholar
  33. 33.
    Jablonska E, Gromadzinska J, Reszka E et al (2009) Association between GPx1 Pro198Leu polymorphism, GPx1 activity and plasma selenium concentration in humans. Eur J Nut 48:383–386CrossRefGoogle Scholar
  34. 34.
    Takata Y, King IB, Lampe JW et al (2012) Genetic variation in GPX1 is associated with GPX1 activity in a comprehensive analysis of genetic variations in selenoenzyme genes and their activity and oxidative stress in humans. J Nutr 142:419–426PubMedCrossRefGoogle Scholar
  35. 35.
    Méplan C, Crosley LK, Nicol F et al (2007) Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study). FASEB J 21:3063–3074PubMedCrossRefGoogle Scholar
  36. 36.
    Villette S, Kyle JA, Brown KM et al (2002) A novel single nucleotide polymorphism in the 3’ untranslated region of human glutathione peroxidase 4 influences lipoxygenase metabolism. Blood Cells Mol Dis 29:174–178PubMedCrossRefGoogle Scholar
  37. 37.
    Bermano G, Pagmantidis V, Holloway N et al (2007) Evidence that a polymorphism within the 3′ UTR of glutathione peroxidase 4 is functional and is associated with susceptibility to colorectal cancer. Genes Nutr 2:225–232PubMedCrossRefGoogle Scholar
  38. 38.
    Gautrey H, Nicol F, Sneddon AA et al (2011) A T/C polymorphism in the GPX4 3′ UTR affects the selenoprotein expression pattern and cell viability in transfected Caco-2 cells. Biochim Biophys Acta 1810:584–591PubMedCrossRefGoogle Scholar
  39. 39.
    Hu YJ, Korotkov KV, Mehta R et al (2001) Distribution and functional consequences of nucleotide polymorphisms in the 3′-untranslated region of the human Sep 15 gene. Cancer Res 61:2307–2310PubMedGoogle Scholar
  40. 40.
    Pawlowicz Z, Zachara BA, Trafikowska U et al (1991) Blood selenium concentrations and glutathione peroxidase activities in patients with breast cancer and with advanced gastrointestinal cancer. J Trace Elem Electrolytes Health Dis 5:275–277PubMedGoogle Scholar
  41. 41.
    Hu YJ, Diamond AM (2003) Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res 63:3347–3351PubMedGoogle Scholar
  42. 42.
    Gresner P, Gromadzinska J, Jablonska E et al (2009) Expression of selenoprotein-coding genes SEPP1, SEP15 and hGPX1 in non-small cell lung cancer. Lung Cancer 65:34–40PubMedCrossRefGoogle Scholar
  43. 43.
    Reszka E, Gromadzinska J, Jablonska E et al (2009) Level of selenoprotein transcripts in peripheral leukocytes of patients with bladder cancer and healthy individuals. Clin Chem Lab Med 47:1125–1132PubMedCrossRefGoogle Scholar
  44. 44.
    Sutherland A, Kim DH, Relton C et al (2010) Polymorphisms in the selenoprotein S and 15-kDa selenoprotein genes are associated with altered susceptibility to colorectal cancer. Genes Nutr 5:215–223PubMedCrossRefGoogle Scholar
  45. 45.
    Méplan C, Hughes DJ, Pardini B et al (2010) Genetic variants in selenoprotein genes increase risk of colorectal cancer. Carcinogenesis 31:1074–1079PubMedCrossRefGoogle Scholar
  46. 46.
    Shibata T, Arisawa T, Tahara T et al (2009) Selenoprotein S (SEPS1) gene -105G>A promoter polymorphism influences the susceptibility to gastric cancer in the Japanese population. BMC Gastroenterol 9:2PubMedCrossRefGoogle Scholar
  47. 47.
    Peters U, Chatterjee N, Hayes RB et al (2008) Variation in the selenoenzyme genes and risk of advanced distal colorectal adenoma. Cancer Epidemiol Biomarkers Prev 17:1144–1154PubMedCrossRefGoogle Scholar
  48. 48.
    Haug U, Poole EM, Xiao L et al (2012) Glutathione peroxidase tagSNPs: associations with rectal cancer but not with colon cancer. Genes Chromosomes Cancer 51:598–605PubMedCrossRefGoogle Scholar
  49. 49.
    Takata Y, Kristal AR, King IB et al (2011) Serum selenium, genetic variation in selenoenzymes, and risk of colorectal cancer: primary analysis from the women’s health initiative observational study and meta-analysis. Cancer Epidemiol Biomarkers Prev 20:1822–1830PubMedCrossRefGoogle Scholar
  50. 50.
    Steinbrecher A, Méplan C, Hesketh J et al (2010) Effects of selenium status and polymorphisms in selenoprotein genes on prostate cancer risk in a prospective study of European men. Cancer Epidemiol Biomarkers Prev 19:2958–2968PubMedCrossRefGoogle Scholar
  51. 51.
    Penney KL, Schumacher FR, Li H et al (2010) A large prospective study of SEP15 genetic variation, interaction with plasma selenium levels, and prostate cancer risk and survival. Cancer Prev Res 3:604–610CrossRefGoogle Scholar
  52. 52.
    Cooper ML, Adami HO, Grönberg H et al (2008) Interaction between single nucleotide polymorphisms in selenoprotein P and mitochondrial superoxide dismutase determines prostate cancer risk. Cancer Res 68:10171–10177PubMedCrossRefGoogle Scholar
  53. 53.
    Méplan C, Rohrmann S, Steinbrecker A et al (2012) Polymorphisms in thioredoxin reductase and selenoprotein K genes and selenium status moderate risk of prostate cancer. PLOS One 7:e48709Google Scholar
  54. 54.
    Ravn-Haren G, Olsen A, Tjønneland A et al (2006) Associations between GPX1 Pro198Leu polymorphism, erythrocyte GPX activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis 27:820–825PubMedCrossRefGoogle Scholar
  55. 55.
    Cox DG, Hankinson SE, Kraft P et al (2004) No association between GPX1 Pro198Leu and breast cancer risk. Cancer Epidemiol Biomarkers Prev 13:1821–1822PubMedGoogle Scholar
  56. 56.
    Ahn J, Gammon MD, Santella RM et al (2005) No association between glutathione peroxidase Pro198Leu polymorphism and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14:2459–2461PubMedCrossRefGoogle Scholar
  57. 57.
    Knight JA, Onay UV, Wells S et al (2004) Genetic variants of GPX1 and SOD2 and breast cancer risk at the ontario site of the breast cancer family registry. Cancer Epidemiol Biomarkers Prev 13:146–149PubMedCrossRefGoogle Scholar
  58. 58.
    Hu J, Zhou GW, Wang N et al (2010) GPX1 Pro198Leu polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 124:425–431PubMedCrossRefGoogle Scholar
  59. 59.
    Nasr MA, Jun Y, Hu J et al (2003) Allelic loss at the SEP15 locus in breast cancer. Cancer Ther 1:293–298Google Scholar
  60. 60.
    Ratnasinghe D, Tangrea JA, Andersen MR et al (2000) Glutathione peroxidase codon 198 polymorphism variant increases lung cancer risk. Cancer Res 60:6381–6383PubMedGoogle Scholar
  61. 61.
    Yang P, Bamlet WR, Ebbert JO et al (2004) Glutathione pathway genes and lung cancer risk in young and old populations. Carcinogenesis 25:1935–1944PubMedCrossRefGoogle Scholar
  62. 62.
    Skuladottir H, Autrup H, Autrup J et al (2005) Polymorphisms in genes involved in xenobiotic metabolism and lung cancer risk under the age of 60 years. A pooled study of lung cancer patients in Denmark and Norway. Lung Cancer 48:187–199PubMedCrossRefGoogle Scholar
  63. 63.
    Lee CH, Lee KY, Choe KH et al (2006) Effects of oxidative DNA damage and genetic polymorphism of the glutathione peroxidase 1 (GPX1) and 8-oxoguanine glycosylase 1 (hOGG1) on lung cancer. J Prev Med Public Health 39:130–134PubMedGoogle Scholar
  64. 64.
    Raaschou-Nielsen O, Sørensen M, Hansen RD et al (2007) GPX1 Pro198Leu polymorphism, interactions with smoking and alcohol consumption, and risk for lung cancer. Cancer Lett 247:293–300PubMedCrossRefGoogle Scholar
  65. 65.
    Rosenberger A, Illig T, Korb K et al (2008) Do genetic factors protect for early onset lung cancer? A case control study before the age of 50 years. BMC 8:60Google Scholar
  66. 66.
    Moscow JA, Schmidt L, Ingram DT et al (1994) Loss of heterozygosity of the human cytosolic glutathione peroxidase I gene in lung cancer. Carcinogenesis 15:2769–2773PubMedCrossRefGoogle Scholar
  67. 67.
    Méplan C, Hesketh J (2012) The influence of selenium and selenoprotein gene variants on colorectal cancer risk. Mutagenesis 27:177–186PubMedCrossRefGoogle Scholar
  68. 68.
    Pagmantidis V, Méplan C, Van Schothorst EM et al (2008) Supplementation of healthy volunteers with nutritionally-relevant levels of selenium increases expression of lymphocyte protein biosynthesis genes. Amer J Clin Nutr 87:181–189PubMedGoogle Scholar
  69. 69.
    Kipp AP, Banning A, van Schothorst EM et al (2011) Marginal selenium deficiency down-regulates inflammation-related genes in splenic leukocytes of the mouse. J Nutr Biochem [Epub ahead of print]Google Scholar
  70. 70.
    Gong G, Méplan C, Gautrey H et al (2012) Differential effects of selenium and knock-down of glutathione peroxidases on TNFα and flagellin inflammatory responses in gut epithelial cells. Genes Nutr 7:167–178PubMedCrossRefGoogle Scholar
  71. 71.
    Gao Y, Feng HC, Walder K et al (2004) Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress—SelS is a novel glucose-regulated protein. FEBS Lett 563:185–190PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462PubMedCrossRefGoogle Scholar
  73. 73.
    Cole-Ezea P, Swan D, Shanley D et al (2012) Glutathione Peroxidase 4 has a major role in protecting mitochondria from oxidative damage and maintaining oxidative phosphorylation complexes in gut epithelial cells. Free Rad Biol Med 53:488–497Google Scholar
  74. 74.
    Seiler A, Schneider M, Forster H et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8:237–248PubMedCrossRefGoogle Scholar
  75. 75.
    Speckmann B, Bidmon HJ, Pinto A et al (2011) Induction of glutathione peroxidase 4 expression during enterocytic cell differentiation. J Biol Chem 286:10764–10772PubMedCrossRefGoogle Scholar
  76. 76.
    Handy DE, Lubos E, Yang Y et al (2009) Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses. J Biol Chem 284:11913–11921PubMedCrossRefGoogle Scholar
  77. 77.
    Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277–2293PubMedCrossRefGoogle Scholar
  78. 78.
    Kitamura M (2011) Control of NF-κB and inflammation by the unfolded protein response. Int Rev Immunol 30:4–15PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute for Cell and Molecular Biosciences and Human Nutrition Research CentreNewcastle UniversityNewcastle-upon-TyneUK

Personalised recommendations