Advertisement

Anti-Inflammatory and Anticancer Drugs from Nature

  • Barbora Orlikova
  • Noémie Legrand
  • Jana Panning
  • Mario Dicato
  • Marc Diederich
Conference paper
Part of the Cancer Treatment and Research book series (CTAR, volume 159)

Abstract

Over the centuries, plant extracts have been used to treat various diseases. Until now, natural products have played an important role in anticancer therapy as there are more than 500 compounds from terrestrial and marine plants or microorganisms, which have antioxidant, antiproliferative, or antiangiogenic properties and are therefore able to reduce tumor growth. The recent discovery of new natural products has been accelerated by novel technologies (high throughput screening of natural products in plants, animals, marine organisms, and microorganisms). Vincristine, irinotecan, etoposide, and paclitaxel are examples of compounds derived from plants that are used in cancer treatment. Similarly, actinomycin D, mitomycin C, bleomycin, doxorubicin, and L-asparaginase are drugs derived from microorganisms. In this review, we describe the molecular mechanisms of natural compounds with anti-inflammatory and anticancer activities.

Keywords

Natural compounds Cancer Inflammation Cyclooxygenase Nuclear factor kappa B Chemotherapy Chemoprevention 

Abbreviations

VEGF

Vascular endothelial growth factor

ROS

Reactive oxygen species

NF-κB

Transcription factor nuclear factor κB

N-pyrazinecarbonyl-L-phenyl-alanine-l-leucine boronic acid

Bortezomib

BAFF

B-cell activating factor

NIK

NF-κB-inducing kinase

STAT

Signal transducer and activator of transcription

COX-2

Cyclooxygenase-2

CDK

Cyclin-dependent kinase

EEF2

Eukaryotic elongation factor 2

PKC

Protein kinase C

PI3K

Phosphoinositide 3-kinase

MAPK

Mitogen-activated protein kinase

MLCK

Myosin light-chain kinase

ATM

Ataxia telangiectasia mutated

PAL

Phenylalanine ammonia-lyase

EGCG

Epigallocatechin gallate

IKK

Inhibits IκB kinase

DHA

Docosahexaenoic acid

EPA

Eicosapentaenoic acid

ETA

11,14,17-eicosatrienoic acid

Notes

Acknowledgments

BO and NL are recipients of doctoral Télévie-Luxembourg grants. Research at the Laboratoire de Biologie Moléculaire et Cellulaire du Cancer is supported by “Recherche Cancer et Sang” foundation, “Recherches Scientifiques Luxembourg” association, “Een Haerz fir kriibskrank Kanner” association, the Action Lions “Vaincre le Cancer” association and Télévie Luxembourg. Further support was received from the European Union (ITN “RedCat” 215009, Interreg IVa project “Corena”).

References

  1. 1.
    Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335CrossRefPubMedGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefPubMedGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  4. 4.
    Trecul A, Morceau F, Dicato M, Diederich M (2012) Dietary compounds as potent inhibitors of the signal transducers and activators of transcription (STAT) 3 regulatory network. Genes Nutr 7:111–125CrossRefPubMedGoogle Scholar
  5. 5.
    Schumacher M, Kelkel M, Dicato M, Diederich M (2011) Gold from the sea: marine compounds as inhibitors of the hallmarks of cancer. Biotechnol Adv 29:531–547CrossRefPubMedGoogle Scholar
  6. 6.
    Schumacher M, Juncker T, Schnekenburger M, Gaascht F, Diederich M (2011) Natural compounds as inflammation inhibitors. Genes Nutr 6:89–92CrossRefPubMedGoogle Scholar
  7. 7.
    Orlikova B, Diederich M (2012) Power from the garden: plant compounds as inhibitors of the hallmarks of cancer. Curr Med Chem 19:2061–2087CrossRefPubMedGoogle Scholar
  8. 8.
    Kelkel M, Jacob C, Dicato M, Diederich M (2010) Potential of the dietary antioxidants resveratrol and curcumin in prevention and treatment of hematologic malignancies. Molecules 15:7035–7074CrossRefPubMedGoogle Scholar
  9. 9.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545CrossRefPubMedGoogle Scholar
  10. 10.
    Prasad S, Ravindran J, Aggarwal BB (2010) NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem 336:25–37CrossRefPubMedGoogle Scholar
  11. 11.
    Folmer F, Dicato M, Diederich M (2012) From the deepest sea shelf to the uppermost kitchen cabinet shelf: the quest for novel TNF-alpha inhibitors. Curr Top Med Chem 12(3):1392–1407CrossRefPubMedGoogle Scholar
  12. 12.
    Delhalle S, Blasius R, Dicato M, Diederich M (2004) A beginner’s guide to NF-kappaB signaling pathways. Ann NY Acad Sci 1030:1–13CrossRefPubMedGoogle Scholar
  13. 13.
    Meteoglu I, Erdogdu IH, Meydan N, Erkus M, Barutca S (2008) NF-KappaB expression correlates with apoptosis and angiogenesis in clear cell renal cell carcinoma tissues. J Exp Clin Cancer Res 27:53CrossRefPubMedGoogle Scholar
  14. 14.
    Baud V, Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8:33–40CrossRefPubMedGoogle Scholar
  15. 15.
    Nishikori M (2005) Classical and alternative NF-kB activation pathways and their roles in lymphoid malignancies. J Clin Exp Hematopathol 45:15–24CrossRefGoogle Scholar
  16. 16.
    Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734CrossRefPubMedGoogle Scholar
  17. 17.
    Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680–6684CrossRefPubMedGoogle Scholar
  18. 18.
    Heissmeyer V, Krappmann D, Wulczyn FG, Scheidereit C (1999) NF-kappaB p105 is a target of IkappaB kinases and controls signal induction of Bcl-3-p50 complexes. EMBO J 18:4766–4778CrossRefPubMedGoogle Scholar
  19. 19.
    Wu S, Tong L (2010) Differential signaling circuits in regulation of ultraviolet C light-induced early- and late-phase activation of NF-kappaB. Photochem Photobiol 86:995–999CrossRefPubMedGoogle Scholar
  20. 20.
    Muthusamy V, Piva TJ (2010) The UV response of the skin: a review of the MAPK, NFkappaB and TNFalpha signal transduction pathways. Arch Dermatol Res 302:5–17CrossRefPubMedGoogle Scholar
  21. 21.
    Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato M, Diederich M (2005) Chemopreventive and therapeutic effects of curcumin. Cancer Lett 223:181–190CrossRefPubMedGoogle Scholar
  22. 22.
    Duvoix A, Morceau F, Delhalle S, Schmitz M, Schnekenburger M, Galteau MM, Dicato M, Diederich M (2003) Induction of apoptosis by curcumin: mediation by glutathione S-transferase P1–1 inhibition. Biochem Pharmacol 66:1475–1483CrossRefPubMedGoogle Scholar
  23. 23.
    Reuter S, Schnekenburger M, Cristofanon S, Buck I, Teiten MH, Daubeuf S, Eifes S, Dicato M, Aggarwal BB, Visvikis A, Diederich M (2009) Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1. Biochem Pharmacol 77:397–411CrossRefPubMedGoogle Scholar
  24. 24.
    Duvoix A, Delhalle S, Blasius R, Schnekenburger M, Morceau F, Fougere M, Henry E, Galteau MM, Dicato M, Diederich M (2004) Effect of chemopreventive agents on glutathione S-transferase P1–1 gene expression mechanisms via activating protein 1 and nuclear factor kappaB inhibition. Biochem Pharmacol 68:1101–1111CrossRefPubMedGoogle Scholar
  25. 25.
    Folmer F, Blasius R, Morceau F, Tabudravu J, Dicato M, Jaspars M, Diederich M (2006) Inhibition of TNFalpha-induced activation of nuclear factor kappaB by kava (Piper methysticum) derivatives. Biochem Pharmacol 71:1206–1218CrossRefPubMedGoogle Scholar
  26. 26.
    Folmer F, Harrison WT, Tabudravu JN, Jaspars M, Aalbersberg W, Feussner K, Wright AD, Dicato M, Diederich M (2008) NF-kappaB-inhibiting naphthopyrones from the Fijian echinoderm Comanthus parvicirrus. J Nat Prod 71:106–111CrossRefPubMedGoogle Scholar
  27. 27.
    Juncker T, Schumacher M, Dicato M, Diederich M (2009) UNBS1450 from Calotropis procera as a regulator of signaling pathways involved in proliferation and cell death. Biochem Pharmacol 78:1–10CrossRefPubMedGoogle Scholar
  28. 28.
    Juncker T, Cerella C, Teiten MH, Morceau F, Schumacher M, Ghelfi J, Gaascht F, Schnekenburger M, Henry E, Dicato M, Diederich M (2011) UNBS1450, a steroid cardiac glycoside inducing apoptotic cell death in human leukemia cells. Biochem Pharmacol 81:13–23CrossRefPubMedGoogle Scholar
  29. 29.
    Schumacher M, Cerella C, Eifes S, Chateauvieux S, Morceau F, Jaspars M, Dicato M, Diederich M (2010) Heteronemin, a spongean sesterterpene, inhibits TNF alpha-induced NF-kappa B activation through proteasome inhibition and induces apoptotic cell death. Biochem Pharmacol 79:610–622CrossRefPubMedGoogle Scholar
  30. 30.
    Aly AH, Debbab A, Clements C, Edrada-Ebel R, Orlikova B, Diederich M, Wray V, Lin W, Proksch P (2011) NF kappa B inhibitors and antitrypanosomal metabolites from endophytic fungus Penicillium sp. isolated from Limonium tubiflorum. Bioorg Med Chem 19:414–421CrossRefPubMedGoogle Scholar
  31. 31.
    Orlikova B, Tasdemir D, Golais F, Dicato M, Diederich M (2011) The aromatic ketone 4′-hydroxychalcone inhibits TNFalpha-induced NF-kappaB activation via proteasome inhibition. Biochem Pharmacol 82:620–631CrossRefPubMedGoogle Scholar
  32. 32.
    Orlikova B, Schnekenburger M, Zloh M, Golais F, Diederich M, Tasdemir D (2012) Natural chalcones as dual inhibitors of HDACs and NF-kappaB. Oncol Rep 28(3):797PubMedGoogle Scholar
  33. 33.
    Schumacher M, Cerella C, Reuter S, Dicato M, Diederich M (2011) Anti-inflammatory, pro-apoptotic, and anti-proliferative effects of a methanolic neem (Azadirachta indica) leaf extract are mediated via modulation of the nuclear factor-kappaB pathway. Genes Nutr 6:149–160CrossRefPubMedGoogle Scholar
  34. 34.
    Folmer F, Jaspars M, Dicato M, Diederich M (2008) Marine natural products as targeted modulators of the transcription factor NF-kappaB. Biochem Pharmacol 75:603–617CrossRefPubMedGoogle Scholar
  35. 35.
    Folmer F, Jaspars M, Solano G, Cristofanon S, Henry E, Tabudravu J, Black K, Green DH, Kupper FC, Aalbersberg W, Feussner K, Dicato M, Diederich M (2009) The inhibition of TNF-alpha-induced NF-kappaB activation by marine natural products. Biochem Pharmacol 78:592–606CrossRefPubMedGoogle Scholar
  36. 36.
    Teiten MH, Eifes S, Dicato M, Diederich M (2010) Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins (Basel) 2:128–162CrossRefGoogle Scholar
  37. 37.
    Teiten MH, Gaascht F, Eifes S, Dicato M, Diederich M (2010) Chemopreventive potential of curcumin in prostate cancer. Genes Nutr 5:61–74CrossRefPubMedGoogle Scholar
  38. 38.
    Schumacher M, Kelkel M, Dicato M, Diederich M (2011) A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2010. Molecules 16:5629–5646CrossRefPubMedGoogle Scholar
  39. 39.
    Orlikova B, Tasdemir D, Golais F, Dicato M, Diederich M (2011) Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr 6:125–147CrossRefPubMedGoogle Scholar
  40. 40.
    Blasius R, Reuter S, Henry E, Dicato M, Diederich M (2006) Curcumin regulates signal transducer and activator of transcription (STAT) expression in K562 cells. Biochem Pharmacol 72:1547–1554CrossRefPubMedGoogle Scholar
  41. 41.
    Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B (2009) Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann NY Acad Sci 1171:59–76CrossRefPubMedGoogle Scholar
  42. 42.
    Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M (2010) The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol 2010:215158PubMedGoogle Scholar
  43. 43.
    Cerella C, Sobolewski C, Dicato M, Diederich M (2010) Targeting COX-2 expression by natural compounds: a promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochem Pharmacol 80:1801–1815CrossRefPubMedGoogle Scholar
  44. 44.
    Zhai S, Senderowicz AM, Sausville EA, Figg WD (2002) Flavopiridol, a novel cyclin-dependent kinase inhibitor, in clinical development. Ann Pharmacother 36:905–911CrossRefPubMedGoogle Scholar
  45. 45.
    Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ (1996) Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res 56:2973–2978PubMedGoogle Scholar
  46. 46.
    da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1:364–369CrossRefPubMedGoogle Scholar
  47. 47.
    Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, Capaccioli S (2009) Natural compounds for cancer treatment and prevention. Pharmacol Res 59:365–378CrossRefPubMedGoogle Scholar
  48. 48.
    Abdel-Mageed WM, Milne BF, Wagner M, Schumacher M, Sandor P, Pathom-aree W, Goodfellow M, Bull AT, Horikoshi K, Ebel R, Diederich M, Fiedler HP, Jaspars M (2010) Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana trench sediment. Org Biomol Chem 8:2352–2362CrossRefPubMedGoogle Scholar
  49. 49.
    Folmer F, Jaspars M, Schumacher M, Dicato M, Diederich M (2010) Marine natural products targeting phospholipases A2. Biochem Pharmacol 80:1793–1800CrossRefPubMedGoogle Scholar
  50. 50.
    Rateb ME, Houssen WE, Schumacher M, Harrison WT, Diederich M, Ebel R, Jaspars M (2009) Bioactive diterpene derivatives from the marine sponge Spongionella sp. J Nat Prod 72:1471–1476CrossRefPubMedGoogle Scholar
  51. 51.
    Teiten MH, Gaascht F, Dicato M, Diederich M (2012) Targeting the wingless signaling pathway with natural compounds as chemopreventive or chemotherapeutic agents. Curr Pharm Biotechnol 13:245–254CrossRefPubMedGoogle Scholar
  52. 52.
    Ahuja D, Vera MD, SirDeshpande BV, Morimoto H, Williams PG, Joullie MM, Toogood PL (2000) Inhibition of protein synthesis by didemnin B: how EF-1 alpha mediates inhibition of translocation. Biochemistry 39:4339–4346CrossRefPubMedGoogle Scholar
  53. 53.
    Grubb DR, Wolvetang EJ, Lawen A (1995) Didemnin B induces cell death by apoptosis: the fastest induction of apoptosis ever described. Biochem Biophys Res Commun 215:1130–1136CrossRefPubMedGoogle Scholar
  54. 54.
    Bai R, Friedman SJ, Pettit GR, Hamel E (1992) Dolastatin 15, a potent antimitotic depsipeptide derived from Dolabella auricularia. Interaction with tubulin and effects of cellular microtubules. Biochem Pharmacol 43:2637–2645CrossRefPubMedGoogle Scholar
  55. 55.
    Wall NR, Mohammad RM, Reddy KB, Al-Katib AM (2000) Bryostatin 1 induces ubiquitination and proteasome degradation of Bcl-2 in the human acute lymphoblastic leukemia cell line, Reh. Int J Mol Med 5:165–171PubMedGoogle Scholar
  56. 56.
    Geerts AM, Vanheule E, Van Vlierberghe H, Leybaert L, Van Steenkiste C, De Vos M, Colle I (2008) Rapamycin prevents mesenteric neo-angiogenesis and reduces splanchnic blood flow in portal hypertensive mice. Hepatology Res Official J Jpn Soc Hepatology 38:1130–1139CrossRefGoogle Scholar
  57. 57.
    Nakanishi S, Kakita S, Takahashi I, Kawahara K, Tsukuda E, Sano T, Yamada K, Yoshida M, Kase H, Matsuda Y et al (1992) Wortmannin, a microbial product inhibitor of myosin light chain kinase. J Biol Chem 267:2157–2163PubMedGoogle Scholar
  58. 58.
    Liu L, Hudgins WR, Shack S, Yin MQ, Samid D (1995) Cinnamic acid: a natural product with potential use in cancer intervention. Int J Cancer 62:345–350CrossRefPubMedGoogle Scholar
  59. 59.
    Ekmekcioglu C, Feyertag J, Marktl W (1998) Cinnamic acid inhibits proliferation and modulates brush border membrane enzyme activities in Caco-2 cells. Cancer Lett 128:137–144CrossRefPubMedGoogle Scholar
  60. 60.
    Ullah MF, Khan MW (2008) Food as medicine: potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pac J Cancer Prev 9:187–195PubMedGoogle Scholar
  61. 61.
    Tapiero H, Tew KD, Ba GN, Mathe G (2002) Polyphenols: do they play a role in the prevention of human pathologies? Biomed Pharmacother 56:200–207CrossRefPubMedGoogle Scholar
  62. 62.
    Di Carlo G, Mascolo N, Izzo AA, Capasso F (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65:337–353CrossRefPubMedGoogle Scholar
  63. 63.
    Cabrera M, Simoens M, Falchi G, Lavaggi ML, Piro OE, Castellano EE, Vidal A, Azqueta A, Monge A, de Cerain AL, Sagrera G, Seoane G, Cerecetto H, Gonzalez M (2007) Synthetic chalcones, flavanones, and flavones as antitumoral agents: biological evaluation and structure-activity relationships. Bioorg Med Chem 15:3356–3367CrossRefPubMedGoogle Scholar
  64. 64.
    De Vincenzo R, Scambia G, Benedetti Panici P, Ranelletti FO, Bonanno G, Ercoli A, Delle Monache F, Ferrari F, Piantelli M, Mancuso S (1995) Effect of synthetic and naturally occurring chalcones on ovarian cancer cell growth: structure-activity relationships. Anticancer Drug Des 10:481–490PubMedGoogle Scholar
  65. 65.
    Jin YL, Jin XY, Jin F, Sohn DH, Kim HS (2008) Structure activity relationship studies of anti-inflammatory TMMC derivatives: 4-dimethylamino group on the B ring responsible for lowering the potency. Arch Pharm Res 31:1145–1152CrossRefPubMedGoogle Scholar
  66. 66.
    Loa J, Chow P, Zhang K (2009) Studies of structure-activity relationship on plant polyphenol-induced suppression of human liver cancer cells. Cancer Chemother Pharmacol 63:1007–1016CrossRefPubMedGoogle Scholar
  67. 67.
    Srinivasan B, Johnson TE, Lad R, Xing C (2009) Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3′,4′,5′-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities. J Med Chem 52:7228–7235CrossRefPubMedGoogle Scholar
  68. 68.
    Yu Z, Shah DM (2007) Curcumin down-regulates Ets-1 and Bcl-2 expression in human endometrial carcinoma HEC-1-A cells. Gynecol Oncol 106:541–548Google Scholar
  69. 69.
    Kundu JK, Chun KS, Kim SO, Surh YJ (2004) Resveratrol inhibits phorbol ester-induced cyclooxygenase-2 expression in mouse skin: MAPKs and AP-1 as potential molecular targets. BioFactors 21:33–39CrossRefPubMedGoogle Scholar
  70. 70.
    Peng G, Dixon DA, Muga SJ, Smith TJ, Wargovich MJ (2006) Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol Carcinog 45:309–319CrossRefPubMedGoogle Scholar
  71. 71.
    Shrotriya S, Kundu JK, Na HK, Surh YJ (2010) Diallyl trisulfide inhibits phorbol ester-induced tumor promotion, activation of AP-1, and expression of COX-2 in mouse skin by blocking JNK and Akt signaling. Cancer Res 70:1932–1940CrossRefPubMedGoogle Scholar
  72. 72.
    Chiou WF, Don MJ, Liao JF, Wei BL (2011) Psoralidin inhibits LPS-induced iNOS expression via repressing Syk-mediated activation of PI3K-IKK-IκB signaling pathways. Eur J Pharmacol 650(1):102–109Google Scholar
  73. 73.
    Kundu JK, Shin YK, Surh YJ (2006) Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-kappaB and AP-1 as prime targets. Biochem Pharmacol 72:1506–1515CrossRefPubMedGoogle Scholar
  74. 74.
    Crespo I, Garcia-Mediavilla MV, Gutierrez B, Sanchez-Campos S, Tunon MJ, Gonzalez-Gallego J (2008) A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells. Br J Nutr 100:968–976CrossRefPubMedGoogle Scholar
  75. 75.
    Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421CrossRefPubMedGoogle Scholar
  76. 76.
    Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7:464–473CrossRefPubMedGoogle Scholar
  77. 77.
    Fernau NS, Fugmann D, Leyendecker M, Reimann K, Grether-Beck S, Galban S, Ale-Agha N, Krutmann J, Klotz LO (2010) Role of HuR and p38MAPK in ultraviolet B-induced post-transcriptional regulation of COX-2 expression in the human keratinocyte cell line HaCaT. J Biol Chem 285:3896–3904CrossRefPubMedGoogle Scholar
  78. 78.
    Sandler H, Stoecklin G (2008) Control of mRNA decay by phosphorylation of tristetraprolin. Biochem Soc Trans 36:491–496CrossRefPubMedGoogle Scholar
  79. 79.
    Cho JW, Park K, Kweon GR, Jang BC, Baek WK, Suh MH, et al. (2005) Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocyte (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK a potential upstream targets. Exp Mol Med 37:186–192Google Scholar
  80. 80.
    Tong X, Van Dross RT, Abu-Yousif A, Morrison AR, Pelling JC (2007) Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition. Mol Cell Biol 27:283–296CrossRefPubMedGoogle Scholar
  81. 81.
    Sanduja S, Blanco FF, Dixon DA (2011) The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdisciplinary Rev RNA 2:42–57CrossRefGoogle Scholar
  82. 82.
    Bhatia HS, Candelario-Jalil E, de Oliveira AC, Olajide OA, Martinez-Sanchez G, Fiebich BL (2008) Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells. Arch Biochem Biophys 477:253–258CrossRefPubMedGoogle Scholar
  83. 83.
    Bommareddy A, Zhang X, Schrader D, Kaushik RS, Zeman D, Matthees DP, Dwivedi C (2009) Effects of dietary flaxseed on intestinal tumorigenesis in Apc(Min) mouse. Nutr Cancer 61:276–283CrossRefPubMedGoogle Scholar
  84. 84.
    Fradet V, Cheng I, Casey G, Witte JS (2009) Dietary omega-3 fatty acids, cyclooxygenase-2 genetic variation, and aggressive prostate cancer risk. Clin Cancer Res Official J Am Assoc Cancer Res 15:2559–2566CrossRefGoogle Scholar
  85. 85.
    Lee CY, Sit WH, Fan ST, Man K, Jor IW,Wong LL, et al. (2010) The cell cycle effects of docosahexaenoic acid on human metastatic hepatocellular carcinoma proliferation. Int J Oncol 36:991–998Google Scholar
  86. 86.
    Jin XJ, Kim EJ, Oh IK, Kim YK, Park CH, Chung JH (2010) Prevention of UV-induced skin damages by 11,14,17-eicosatrienoic acid in hairless mice in vivo. J Korean Med Sci 25:930–937Google Scholar
  87. 87.
    Gluszko P, Bielinska A (2009) Non-steroidal anti-inflammatory drugs and the risk of cardiovascular diseases: are we going to see the revival of cyclooxygenase-2 selective inhibitors? Pol Arch Med Wewn 119:231–235PubMedGoogle Scholar
  88. 88.
    Jang BC, Sung SH, Park JG, Park JW, Bae JH, Shin DH, Park GY, Han SB, Suh SI (2007) Glucosamine hydrochloride specifically inhibits COX-2 by preventing COX-2 N-glycosylation and by increasing COX-2 protein turnover in a proteasome-dependent manner. J Biol Chem 282:27622–27632CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Barbora Orlikova
    • 1
  • Noémie Legrand
    • 1
  • Jana Panning
    • 1
  • Mario Dicato
    • 1
  • Marc Diederich
    • 1
    • 2
  1. 1.Laboratoire de Biologie Moléculaire et Cellulaire du CancerFondation de Recherche Cancer et SangLuxembourgLuxembourg
  2. 2.College of PharmacySeoul National UniversitySeoulSouth Korea

Personalised recommendations