Skip to main content

Extra Virgin Olive Oil: From Composition to “Molecular Gastronomy”

  • Conference paper
  • First Online:
Advances in Nutrition and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 159))

Abstract

The aim of this chapter is to provide a brief overview of the recent results of studies on extra virgin olive oil (EVOO) and its interactions with other food ingredients during cooking, to highlight basic molecular aspects of the “magic” of EVOO and its role in Mediterranean gastronomy. The use of raw EVOO added to foods after cooking (or as a salad oil) is the best way to express the original flavour and to maximize the intake of natural antioxidants and compounds related to positive effects on human health (hypotensive, anti-inflammatory, and anti-cancerogenic, among others). EVOO, however, also exhibits its protective properties during/after cooking. Different chemical interactions between biophenolic compounds and other food ingredients (water, milk proteins, carotenoids of tomato, omega-3 polyunsaturated fatty acids in canned-in-oil fish and meat or fish proteins) occur. Even during cooking, EVOO exhibits strong antioxidant properties and influences the overall flavour of cooked foods. The physical (partitioning, emulsion) and chemical (hydrolysis, covalent binding, antioxidant properties) phenomena occurring during cooking of EVOO are discussed with emphasis on the changes in the sensory (bitterness and fruity flavour) and nutritional qualities of some traditional Mediterranean foods. In particular, tomato–oil interactions during cooking, fish canning in EVOO, meat marinated in EVOO before cooking and roasting and frying in EVOO are examined. The interactions between EVOO antioxidants and flavours with milk proteins are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EFSA:

European food safety authority

EVOO:

Extra virgin olive oil

HA:

Heterocyclic Amine

HPLC:

High-performance liquid chromatography

HPTA:

Hydroxy pentacyclic triterpene acids

LC–MS:

Liquid chromatography–Mass spectrometry

NMR:

Nuclear magnetic resonance

References

  1. Ambrosino ML, Della Medaglia D, Paduano A et al (2002) Behaviour of phenolic antioxidants of virgin oil during oil heating and frying. In: Amadò R et al (eds) Bioactive compounds in plant foods: healt effects and perspectives for the food industry. European scientific conference of COST action 916. EC Office for Official Publications, Luxembourg, pp 119–120, ISBN 92-828-1816-0

    Google Scholar 

  2. Andrikopoulos NK, Kalogeropoulos N, Falirea A et al (2002) Performance of virgin olive oil and vegetable shortening during domestic deep-frying and pan-frying of potatoes. Int J Food Sci Technol 37:177–190

    Article  CAS  Google Scholar 

  3. Andrikopoulos NK, Dedoussis GVZ, Falirea A et al (2002) Deterioration of natural antioxidant species of vegetable edible oils during the domestic deep-frying and pan-frying of potatoes. Int J Food Sci Nutr 53:351–363

    Article  PubMed  CAS  Google Scholar 

  4. Arribas-Lorenzo G, Fogliano V, Morales FJ (2009) Acrylamide Formation in a cookie system as influenced by the oil phenol profile and degree of oxidation. Eur Food Res Technol 228:311–319

    Google Scholar 

  5. Beauchamp GK, Keast RS, Morel D et al (2005) Ibuprofen-like activity in extra-virgin olive oil. Nature 437:45–46

    Article  PubMed  CAS  Google Scholar 

  6. Beltran G, Paz Aguilera M, Gordon MH (2005) Solid phase microextraction of volatile oxidation compounds in oil-in-water emulsions. Food Chem 92:401–406

    Article  CAS  Google Scholar 

  7. Brenes M, Garcia A, Dobarganes MC et al (2002) Influence of thermal treatments simulating cooking processes on the polyphenol content in virgin olive oil. J Agric Food Chem 50:5962–5967

    Article  PubMed  CAS  Google Scholar 

  8. Chiou A, Kalogeropoulos N, Boskou G et al (2012) Migration of health promoting microconstituents from frying vegetable oils to French fries. Food Chem 133:1255–1263

    Article  CAS  Google Scholar 

  9. Cicerale S, Lucas LJ, Keast RS (2012) Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr Opin Biotechnol 23:129–135

    Article  PubMed  CAS  Google Scholar 

  10. Della Medaglia D, Ambrosino ML, Spagna Musso S et al (1996) Modification of phenols during the storage and heating of extra-virgin olive oil. Oil Process and Biochemistry of lipids. In: 1st European meeting of the American oil chemists society, University of Burgundy, Dijon (France) 19–20 Sept, p B24

    Google Scholar 

  11. EFSA (2011) Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), “maintenance of normal blood HDL-cholesterol concentrations” (ID 1639), “maintenance of normal blood pressure” (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9(4):2033

    Google Scholar 

  12. Fini L, Hotchkiss E, Fogliano V et al (2008) Chemopreventive properties of pinoresinol-rich olive oil involve a selective activation of the ATM-p53 cascade in colon cancer cell lines. Carcinogenesis 29:139–146

    Article  PubMed  CAS  Google Scholar 

  13. Fogliano V, Ritieni A, Monti S et al (1999) Antioxidant activity of virgin olive oil phenolic compounds in a micellar system. J Sci Food Agric 79:1803–1808

    Article  CAS  Google Scholar 

  14. Fogliano V, Sacchi R (2006) Oleocanthal in olive oil: between myth and reality. Mol Nutr Food Res 50:5–6

    Article  PubMed  Google Scholar 

  15. Frankel EN (1998) Lipid Oxidation. The Oily Press Ed, Dundee

    Google Scholar 

  16. Frankel EN (2011) Nutritional and biological properties of extra virgin olive oil. J Agric Food Chem 59(3):785–792

    Article  PubMed  CAS  Google Scholar 

  17. Lee A, Thurnham I, Chopra M (2000) Consumption of tomato products with olive oil but not sunflower oil increases the antioxidant activity of plasma. Free Radical Biol Med 29:1051–1055

    Article  CAS  Google Scholar 

  18. Lucas L, Russell A, Keast R (2011) Molecular mechanisms of inflammation. Anti-inflammatory benefits of virgin olive oil and the phenolic compound oleocanthal. J Agric Food Chem 59:785–792

    Article  Google Scholar 

  19. Kalogeropoulos N, Chiou A, Mylona A et al (2007) Recovery and distribution of natural antioxidants (α-tocopherol, polyphenols and terpenic acids) after pan-frying of Mediterranean finfish in virgin olive oil. Food Chem 100:509–517

    Article  CAS  Google Scholar 

  20. Kalogeropoulos N, Mylona A, Chiou A et al (2007) Retention and distribution of natural antioxidants (α-tocopherol, polyphenols and terpenic acids) after shallow frying of vegetables in virgin olive oil. LWT 40:1008–1017

    Article  CAS  Google Scholar 

  21. Medina I, Sacchi R, Aubourg S (1995) A 13C-NMR study of lipid alteration during fish canning: effect of filling medium. J Sci Food Agric 69:445–450

    Article  CAS  Google Scholar 

  22. Medina I, Sacchi R, Giudicianni I et al (1998) Oxidation of fish lipids during thermal stress as studied by 13C nuclear magnetic resonance spectroscopy. J Am Oil Chem Soc 75:147–154

    Article  CAS  Google Scholar 

  23. Medina I, Sacchi R, Biondi L et al (1998) Effect of packing media on the oxidation of canned tuna lipids. Antioxidant effectiveness of extra virgin olive oil. J Agric Food Chem 46:1150–1157

    Article  CAS  Google Scholar 

  24. Meynier A, Rampon V, Delgadarrondo M et al (2004) Hexanal and t-2-hexenal form covalent bonds with whey proteins and sodium caseinate in aqueous solution. Int Dairy J 14:681–690

    Article  CAS  Google Scholar 

  25. Monti S, Ritieni A, Sacchi R et al (2001) Characterisation of phenolic compounds in virgin olive oil and their effect on the formation of carcinogenic/mutagenic heterocyclic amines in a model system. J Agric Food Chem 49:3969–3975

    Article  PubMed  CAS  Google Scholar 

  26. Napolitano A, Morales F, Sacchi R et al (2008) Relationship between virgin olive oil phenolic compounds and acrylamide formation in fried crisps. J Agric Food Chem 56:2034–2040

    Article  PubMed  CAS  Google Scholar 

  27. Omoni AO, Aluko RE (2005) The anti-carcinogenic and anti-atherogenic effects of lycopene: a review. Trends Food Sci Technol 16:344–350

    Article  CAS  Google Scholar 

  28. Pannellini T, Iezzi M, Liberatore M et al (2010) A dietary tomato supplement prevents prostate cancer in TRAMP mice. Cancer Prev Res (Phila) 3:1284–1291

    Article  CAS  Google Scholar 

  29. Pernice R, Vitaglione P, Sacchi R et al (2007) Phytochemicals in mediterranean diet: the interaction between tomato and olive oil bioactive compounds. In: Hui YH et al (eds) Handbook of food products manufacturing, Vol 2. Wiley-Interscience, London, pp 53–68. ISBN 978-0-470-04964-0

    Google Scholar 

  30. Persson E, Graziani G, Ferracane R et al (2003) Influence of antioxidants in virgin olive oil on the formation of heterocyclic amines in fried beef burgers. Food Chem Tox 41:1587–1597

    Article  CAS  Google Scholar 

  31. Preedy V R, Watson RR (2010) Olives and olive oil in health and disease prevention. Academic Press, Elsevier Inc, USA

    Google Scholar 

  32. Sacchi R, Paduano A, Fiore F et al (2002) Partition behavior of virgin olive oil phenolic compounds in Oil-Brine mixtures during thermal processing for fish canning. J Agric Food Chem 50:2830–2835

    Article  PubMed  CAS  Google Scholar 

  33. Sacchi R, Falcigno L, Paduano A et al (2006) Quantitative evaluation of the aldehydes formed in heated vegetable oils using high resolution proton-NMR spectroscopy. Riv Ital Sostanze Grasse 82:257–263

    Google Scholar 

  34. Savarese M, Parisini C, De Marco E et al (2006) Detection of biophenols from virgin olive oil in fried French-fries potatoes by high-performance liquid chromatography tandem electrospray ionization mass spectrometry (HPLC-ESI/MS). In: 4th EuroFed lipid congress (Oils, fats and lipids for a Healthier future), University Complutense of Madrid, Spain

    Google Scholar 

  35. Vitaglione P, Fogliano V (2004) Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food. J Chromatography B 802:189–199

    Article  CAS  Google Scholar 

  36. Vitaglione P, Savarese M, Paduano A et al (2012) Healthy virgin olive oil: a matter of bitterness. Critical Rev Food Sci Nutr, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Sacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sacchi, R., Paduano, A., Savarese, M., Vitaglione, P., Fogliano, V. (2014). Extra Virgin Olive Oil: From Composition to “Molecular Gastronomy”. In: Zappia, V., Panico, S., Russo, G., Budillon, A., Della Ragione, F. (eds) Advances in Nutrition and Cancer. Cancer Treatment and Research, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38007-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38007-5_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38006-8

  • Online ISBN: 978-3-642-38007-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics