Skip to main content

New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search

  • Chapter
  • First Online:
Massively Parallel Evolutionary Computation on GPGPUs

Part of the book series: Natural Computing Series ((NCS))

Abstract

This chapter presents an in-depth study of a novel parallel optimization algorithm specially designed to run on Graphic Processing Units (GPUs). The underlying operation relates to systolic computing and is inspired by the systolic contraction of the heart that makes possible blood circulation. The algorithm, called Systolic Genetic Search (SGS), is based on the synchronous circulation of solutions through a grid of processing units and tries to profit from the parallel architecture of GPUs to achieve high time performance. SGS has shown not only to numerically outperform a random search and two genetic algorithms for solving the Knapsack Problem over a set of increasingly sized instances, but also its parallel implementation can obtain a runtime reduction that, depending on the GPU technology used, can reach more than 100 times. A study of the performance of the parallel implementation of SGS on four different GPUs has been conducted to show the impact of the Nvidia’s GPU compute capabilities on the runtimes of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alba, E. (ed.): Parallel Metaheuristics: A New Class of Algorithms. Wiley, London (2005)

    Google Scholar 

  2. Alba, E., Dorronsorso, B. (eds.): Cellular Genetic Algorithms. Springer, New York (2008)

    MATH  Google Scholar 

  3. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002)

    Article  Google Scholar 

  4. Alba, E., Vidal, P.: Systolic optimization on GPU platforms. In: 13th International Conference on Computer Aided Systems Theory (EUROCAST 2011) (2011)

    Google Scholar 

  5. Benner, P., Ezzatti, P., Kressner, D., Quintana-Ortí, E.S., Remón, A.: A mixed-precision algorithm for the solution of Lyapunov equations on hybrid CPU-GPU platforms. Parallel Comput. 37(8), 439–450 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cecilia, J.M., García, J.M., Ujaldon, M., Nisbet, A., Amos, M.: Parallelization strategies for ant colony optimisation on GPUs. In: Proceedings of the 25th IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2011), Anchorage, pp. 339–346, 2011

    Google Scholar 

  7. de Veronese, L.P., Krohling, R.A.: Differential evolution algorithm on the GPU with C-CUDA. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, pp. 1–7, 2010

    Google Scholar 

  8. Ezzatti, P., Quintana-Ortí, E.S., Remón, A.: Using graphics processors to accelerate the computation of the matrix inverse. J. Supercomput. 58(3), 429–437 (2011)

    Article  Google Scholar 

  9. Harding, S., Banzhaf, W.: Implementing Cartesian genetic programming classifiers on graphics processing units using GPU.NET. In: Proceedings of the 13th Annual Conference Companion Material on Genetic and Evolutionary Computation (GECCO 2011), Dublin, pp. 463–470, 2011

    Google Scholar 

  10. Johnson, K.T., Hurson, A.R., Shirazi, B.: General-purpose systolic arrays. Computer 26(11), 20–31 (1993)

    Article  Google Scholar 

  11. Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann, Los Altos (2010)

    Google Scholar 

  12. Kung, H.T.: Why systolic architectures? Computer 15(1), 37–46 (1982)

    Article  Google Scholar 

  13. Kung, H.T., Leiserson, C.E.: Systolic arrays (for VLSI). In: Proceedings of the Sparse Matrix, pp. 256–282 (1978)

    Google Scholar 

  14. Langdon, W.B.: Graphics processing units and genetic programming: an overview. Soft Comput. 15(8), 1657–1669 (2011)

    Article  Google Scholar 

  15. Langdon, W.B., Banzhaf, W.: A SIMD interpreter for genetic programming on GPU graphics cards. In: Proceedings of 11th European Conference on Genetic Programming (EuroGP 2008), Naples, 2008. Lecture Notes in Computer Science, vol. 4971, pp. 73–85. Springer, New York (2008)

    Google Scholar 

  16. Lewis, T.E., Magoulas, G.D.: Strategies to minimise the total run time of cyclic graph based genetic programming with GPUs. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2009), Montreal, pp. 1379–1386, 2009

    Google Scholar 

  17. Luque, G., Alba, E.: Parallel Genetic Algorithms: Theory and Real World Applications. Studies in Computational Intelligence, vol. 367. Springer, Berlin (2011)

    Google Scholar 

  18. Maitre, O., Krüger, F., Querry, S., Lachiche, N., Collet, P.: EASEA: specification and execution of evolutionary algorithms on GPGPU. Soft Comput. 16(2), 261–279 (2012)

    Article  Google Scholar 

  19. Maitre, O., Lachiche, N., Collet, P.: Fast evaluation of GP trees on GPGPU by optimizing hardware scheduling. In: Proceedings of the Genetic Programming, 13th European Conference (EuroGP 2010), Istanbul, 2010. Lecture Notes in Computer Science, vol. 6021, pp. 301–312. Springer, New York (2010)

    Google Scholar 

  20. NVIDIA: NVIDIA CUDA C Programming Guide Version 4.0 (2011)

    Google Scholar 

  21. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007)

    Article  Google Scholar 

  22. Pedemonte, M., Alba, E., Luna, F.: Bitwise operations for GPU implementation of genetic algorithms. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO ’11), pp. 439–446. ACM, New York (2011)

    Google Scholar 

  23. Pedemonte, M., Alba, E., Luna, F.: Towards the design of systolic genetic search. In: IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum, pp. 1778–1786. IEEE Computer Society, Silver Spring (2012)

    Google Scholar 

  24. Pisinger, D.: A minimal algorithm for the 0–1 knapsack problem. Oper. Res. 45, 758–767 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pisinger, D.: Core problems in knapsack algorithms. Oper. Res. 47, 570–575 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32, 2271–2282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Professional, Reading (2010)

    Google Scholar 

  28. Soca, N., Blengio, J., Pedemonte, M., Ezzatti, P.: PUGACE, a cellular evolutionary algorithm framework on GPUs. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010, pp. 1–8. IEEE, Brisbane (2010)

    Google Scholar 

  29. Vidal, P., Alba, E.: Cellular genetic algorithm on graphic processing units. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 223–232 (2010)

    Google Scholar 

  30. Zhang, S., He, Z.: Implementation of parallel genetic algorithm based on CUDA. In: ISICA 2009. Lecture Notes in Computer Science, vol. 5821, pp. 24–30. Springer, Berlin (2009)

    Google Scholar 

  31. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, pp. 1493–1500, 2009

    Google Scholar 

Download references

Acknowledgements

Martín Pedemonte acknowledges support from Programa de Desarrollo de las Ciencias Básicas, Universidad de la República, and Agencia Nacional de Investigación e Innovación, Uruguay. Enrique Alba and Francisco Luna acknowledge support from the “Consejería de Innovación, Ciencia y Empresa,” Junta de Andalucía under contract P07-TIC-03044, the DIRICOM project (http://diricom.lcc.uma.es), and the Spanish Ministry of Science and Innovation and FEDER under contracts TIN2008-06491-C04-01 (the M* project: http://mstar.lcc.uma.es) and TIN2011-28194 (the roadME project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Pedemonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pedemonte, M., Luna, F., Alba, E. (2013). New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search. In: Tsutsui, S., Collet, P. (eds) Massively Parallel Evolutionary Computation on GPGPUs. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37959-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37959-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37958-1

  • Online ISBN: 978-3-642-37959-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics