Skip to main content

POST-VIA: Develop Individualized Marketing Strategies for Tourists

  • Chapter
  • 1790 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 484)

Abstract

POST-VIA is an information system whose main objective is develops tools to manage direct marketing strategies in the tourism sector. POSTVIA can be considered as software able to collect information about the travel experience for tourists and convert this information into knowledge. The system offers DMOs a management component of communication and interaction with the customer based on a highly accurate perception of it, allowing individualized marketing campaigns (Social Semantic CRM). Social Semantic CRM component incorporates several techniques to achieve this aim, among others, opinion mining, recommendation systems, and digital footprint. As a basic differential, POST-VIA platform is not limited to rely on the goodwill of tourists (often controversial and always random) to complete the valuable data of subjective perception, it offers an attractive product catalog and services compelling enough to take the time and the interest to collaborate.

Keywords

  • Recommender System
  • Natural Language Processing
  • Opinion Mining
  • Sentiment Analysis
  • Tourism Management

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-37932-1_4
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-37932-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)

    CrossRef  Google Scholar 

  2. Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)

    CrossRef  Google Scholar 

  3. Benjamins, V.R., Contreras, J., Corcho, O., Gómez-Pérez, A.: The six challenges of the Semantic Web. In: Eighth International Conference on Principles of Knowledge Representation and Reasoning (2002)

    Google Scholar 

  4. Binali, H., Potdar, V., Wu, C.: A state of the art opinion mining and its application domains. In: IEEE International Conference on Industrial Technology, ICIT 2009, pp. 1–6 (2009)

    Google Scholar 

  5. Buhalis, D., Law, R.: Progress in information technology and tourism management: 20 years on and 10 years after the Internet—The state of eTourism research. Tourism Management 29(4), 609–623 (2008)

    CrossRef  Google Scholar 

  6. Buhalis, D.: eTourism: Information technology for strategic tourism management. Pearson (Financial Times/Prentice-Hall) (2003)

    Google Scholar 

  7. Buhalis, D.: eAirlines: strategic and tactical use of ICTs in the airline industry. Information & Management 41(7), 805–825 (2004)

    CrossRef  Google Scholar 

  8. Candiller, L., Jack, K., Fessant, F., Meyer, F.: State-of-the-Art Recommender Systems. In: Collaborative and Social Information Retrieval and Access Techniques for Improved User Modeling, pp. 1–22 (2009)

    Google Scholar 

  9. Carbonell, J.: Subjective Understanding: Computer Models of Belief Systems. PhD thesis, Yale (1979)

    Google Scholar 

  10. Cardie, C., Wiebe, J., Wilson, T., Litman, D.: Combining low-level and summary representations of opinions for multi-perspective question answering. In: Proceedings of the AAAI Spring Symposium on New Directions in Question Answering, pp. 20–27 (2003)

    Google Scholar 

  11. Cardoso, J.: Developing Dynamic Packaging Systems using Semantic Web Technologies. Transactions on Information Science and Applications 3(4), 729–736 (2006)

    MathSciNet  Google Scholar 

  12. Casado-Lumbreras, C., Rodríguez-González, A., Alvarez-Rodríguez, J.M., Colomo-Palacios, R.: PsyDis: Towards a diagnosis support system for psychological disorders. Expert Systems With Applications (2012), http://dx.doi.org/10.1016/j.eswa.2012.04.033

  13. Castells, P.: La Web Semántica. Sistemas Interactivos y Colaborativos en la Web, Ediciones de la Universidad de Castilla-La mancha, 195–212 (2003)

    Google Scholar 

  14. Chiu, D.K., Cheung, S.C., Leung, H.F.: A Multi-Agent Infrastructure for Mobile Workforce Management. Service Oriented Enterprise. In: Proc. HICSS38. IEEE Computer Society Press, Big Island (2005)

    Google Scholar 

  15. Chung, J.Y., Buhalis, D.: Virtual Travel Community: bridging between travellers and locals. In: Sharda, N. (ed.) Tourism Informatics: Visual Travel Recommender Systems, Social Communities and User Interface Design. Information Science Reference, pp. 130–144 (2009)

    Google Scholar 

  16. Damljanovic, D., Devedzic, V.: Applying semantic web to e-tourism. In: Ma, Z. (ed.) The Semantic Web for Knowledge and Data Management: Technologies and Practices. IGI Global (2008)

    Google Scholar 

  17. Das, S., Chen, M.: Yahoo! for Amazon: Extracting market sentiment from stock message boards. In: Proceedings of the Asia Pacific Finance Association Annual Conference, APFA (2001)

    Google Scholar 

  18. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to match ontologies on the Semantic Web. The VLDB Journal 12(4), 303–319 (2003)

    CrossRef  Google Scholar 

  19. Dwyer, L., Edwards, D., Mistilis, N., Roman, C., Scott, N.: Destination and enterprise management for a tourism future. Tourism Management 30(1), 63–74 (2009)

    CrossRef  Google Scholar 

  20. Fensel, D., Facca, F.M., Simperl, E., Toma, I.: Semantic Web. Semantic Web Services, 87–104 (2011)

    Google Scholar 

  21. Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F.: OIL: an ontology infrastructure for the Semantic Web. IEEE Intelligent Systems 16(2), 38–45 (2001)

    CrossRef  Google Scholar 

  22. Foltz, P.W., Dumais, S.T.: Personalized information delivery: an analysis of information filtering methods. Communications of the ACM 35(12), 51–60 (1992)

    CrossRef  Google Scholar 

  23. García Crespo, A., Chamizo, J., Rivera, I., Mencke, M., Colomo Palacios, R., Gómez Berbís, J.M.: SPETA: Social pervasive e-Tourism advisor. Telematics and Informatics 26(3), 306–315 (2009)

    CrossRef  Google Scholar 

  24. García-Crespo, A., Colomo-Palacios, R., Gómez-Berbís, J.M., Chamizo, J., Rivera, I.: Intelligent Decision-Support Systems for e-Tourism: Using SPETA II as a Knowledge Management Platform for DMOs and e-Tourism Service Providers. International Journal of Decision Support System Technology 2(1), 35–47 (2010)

    CrossRef  Google Scholar 

  25. García-Crespo, Á., López-Cuadrado, J.L., Colomo-Palacios, R., González-Carrasco, I., Ruiz-Mezcua, B.: Sem-Fit: A semantic based expert system to provide recommendations in the tourism domain. Expert Systems with Applications 38(10), 13310–13319 (2011)

    CrossRef  Google Scholar 

  26. García-Crespo, A., Rodríguez, A., Mencke, M., Gómez-Berbís, J.M., Colomo-Palacios, R.: ODDIN: Ontology-driven differential diagnosis based on logical inference and probabilistic refinements. Expert Systems with Applications 37(3), 2621–2628 (2010)

    CrossRef  Google Scholar 

  27. Gianforte, G.: The World at Our Fingertips - How Online Travel Companies Can Turn Clicks into Bookings. Journal of Vacation Marketing 10(1), 79–86 (2003)

    CrossRef  Google Scholar 

  28. Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using content and collaborative filtering approaches. In: Proceedings of the Fourth ACM Conference on Recommender Systems (RecSys 2010), pp. 199–206. ACM, New York (2010)

    CrossRef  Google Scholar 

  29. Hearst, M.: Direction-based text interpretation as an information access refinement. In: Jacobs, P. (ed.) Text-Based Intelligent Systems, pp. 257–274. Lawrence Erlbaum Associates (1992)

    Google Scholar 

  30. Hjalager, A.M.: A review of innovation research in tourism. Tourism Management 31(1), 1–12 (2010)

    CrossRef  Google Scholar 

  31. Hu, M., Liu, B.: Mining and Summarizing Customer Reviews. In: KDD, Seattle (2004)

    Google Scholar 

  32. Huettner, A., Subasic, P.: Fuzzy typing for document management. In: ACL 2000 Companion Volume: Tutorial Abstracts and Demonstration Notes, pp. 26–27 (2000)

    Google Scholar 

  33. Jindal, N., Liu, B.: Identifying Comparative Sentences in Text Documents. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (2006a)

    Google Scholar 

  34. Jindal, N., Liu, B.: Mining Comparative Sentences and Relations. Mining Comparative Sentences and Relations (2006b)

    Google Scholar 

  35. Kanellopoulos, D.N.: An ontology-based system for intelligent matching of travellers’ needs for Group Package Tours. International Journal of Digital Culture and Electronic Tourism 1(1), 76–99 (2008)

    CrossRef  Google Scholar 

  36. Kantrowitz, M.: Method and apparatus for analyzing affect and emotion in text. U.S. Patent 6622140 (2003)

    Google Scholar 

  37. Kenteris, M., Gavalas, D., Economou, D.: An innovative mobile electronic tourist guide application. Personal and Ubiquitous Computing 13(2), 103–118 (2009)

    CrossRef  Google Scholar 

  38. Kusha, D., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In: Proceedings of WWW, pp. 519–528 (2003)

    Google Scholar 

  39. Liu, H., Lieberman, H., Selker, T.: A model of textual affect sensing using real-world knowledge. In: Proceedings of Intelligent User Interfaces (IUI), pp. 125–132 (2003)

    Google Scholar 

  40. Maedche, A., Staab, S.: Ontology learning for the Semantic Web. IEEE Intelligent Systems 16(2) (2001)

    Google Scholar 

  41. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the fifth ACM conference on Digital libraries, DL 2000 (2000)

    Google Scholar 

  42. Morinaga, S., Yamanishi, K., Tateishi, K., Fukushima, T.: Mining product reputations on the web. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 341–349 (2002)

    Google Scholar 

  43. Nasukawa, T., Yi, J.: Sentiment analysis: Capturing favorability using natural language processing. In: Proceedings of the Conference on Knowledge Capture, K-CAP (2003)

    Google Scholar 

  44. O’Donovan, J., Smyth, B.: Trust in recommender systems. In: Proceedings of the 10th international conference on Intelligent user interfaces (IUI 2005), pp. 167–174 (2005)

    Google Scholar 

  45. Sullivan, D.O., Wilson, D.C., Smyth, B.: Improving case-based recommendation: A collaborative filtering approach. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 278–291. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  46. Pang, B., Lee, L.: Opinion Mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)

    CrossRef  Google Scholar 

  47. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 79–86 (2002)

    Google Scholar 

  48. Phelan, O., McCarthy, K., Smyth, B.: Using twitter to recommend real-time topical news. In: Proceedings of the Third ACM Conference on Recommender Systems (RecSys 2009), pp. 385–388 (2009)

    Google Scholar 

  49. PhoCusWright, U.S. Online Travel Overview, 11th edn.(2011)

    Google Scholar 

  50. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work (CSCW 1994), pp. 175–186 (1994)

    Google Scholar 

  51. Rodríguez-González, A., Hernandez-Chan, G., Colomo-Palacios, R., Gomez-Berbís, J.M., García-Crespo, A., Alor-Hernandez, G., Valencia-Garcia, R.: Towards an Ontology to support semantics enabled Diagnostic Decision Support Systems. Current Bioinformatics (2012a) (in press)

    Google Scholar 

  52. Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatising the learning of lexical patterns: An application to the enrichment of WordNet by extracting semantic relationships from Wikipedia. Data & Knowledge Engineering 61(3), 484–499 (2007)

    CrossRef  Google Scholar 

  53. Stockdale, R.: Managing customer relationships in the self-service environment of e-tourism. Journal of Vacation Marketing 13(3), 205–219 (2007)

    CrossRef  Google Scholar 

  54. Ten-Hagen, K., Kramer, R., Hermkes, M., Schumann, B., Mueller, P.: Semantic Matching and Heuristic Search for a Dynamic Tour Guide. Information and Communication Technologis in Tourism 5, 149–159 (2005)

    Google Scholar 

  55. Tong, R.M.: An operational system for detecting and tracking opinions in on-line discussion. In: Proceedings of the Workshop on Operational Text Classification, OTC (2001)

    Google Scholar 

  56. Turney, P.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the Association for Computational Linguistics (ACL), pp. 417–424 (2002)

    Google Scholar 

  57. UNWTO. UNWTO, eBusiness for tourism: Practical guidelines for destinations and businesses, World Tourism Organisation, Madrid (2001)

    Google Scholar 

  58. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. The Knowledge Engineering Review 13(1) (1998)

    Google Scholar 

  59. Vogt, C.A.: Customer Relationship Management in Tourism: Management Needs and Research Applications. Journal of Travel Research 50(4), 356–364 (2011)

    CrossRef  Google Scholar 

  60. Werthner, H., Ricci, F.: E-commerce and tourism. Commun. ACM 47(12), 101–105 (2004)

    CrossRef  Google Scholar 

  61. Wiebe, J., Bruce, R.: Probabilistic classifiers for tracking point of view. In: Proceedings of the AAAI Spring Symposium on Empirical Methods in Discourse Interpretation and Generation, pp. 181–187 (1995)

    Google Scholar 

  62. Wiebe, J., Breck, E., Buckley, C., Cardie, C., et al.: Recognizing and organizing opinions expressed in the world press. In: Proceedings of the AAAI Spring Symposium on New Directions in Question Answering (2003)

    Google Scholar 

  63. Wiebe, J.M.: Identifying subjective characters in narrative. In: Proceedings of the International Conference on Computational Linguistics (COLING), pp. 401–408 (1990)

    Google Scholar 

  64. Wiebe, J.M.: Tracking point of view in narrative. Computational Linguistics 20(2), 233–287 (1994)

    Google Scholar 

  65. Wiebe, J.M., Rapaport, W.J.: A computational theory of perspective and reference in narrative. In: Proceedings of the Association for Computational Linguistics (ACL), pp. 131–138 (1988)

    Google Scholar 

  66. Wilks, Y., Bien, J.: Beliefs, points of view and multiple environments. In: Proceedings of the International NATO Symposium on Artificial and Human Intelligence, pp. 147–171 (1984)

    Google Scholar 

  67. Yu, H., Hatzivassiloglou, V.: Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cabanas-Abascal, A., Rodríguez-González, A., Casado-Lumbreras, C., Fernández-González, J., Jiménez-López, D. (2013). POST-VIA: Develop Individualized Marketing Strategies for Tourists. In: Matsuo, T., Colomo-Palacios, R. (eds) Electronic Business and Marketing. Studies in Computational Intelligence, vol 484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37932-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37932-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37931-4

  • Online ISBN: 978-3-642-37932-1

  • eBook Packages: EngineeringEngineering (R0)