Advertisement

Context-Aware Advertising in Pervasive Computing Environment

Part of the Studies in Computational Intelligence book series (SCI, volume 484)

Abstract

Due to the recent advances in sensing and wireless communication technologies, we have been able to capture and understand real-world phenomena by employing tiny ubiquitous sensors such as accelerometers, thermometers, and RFID tags installed in daily environments. For example, by attaching ubiquitous sensors to various indoor objects and furniture, we can observe their use and phenomena that occur around them. Real world context information obtained from the ubiquitous sensors has triggered a wide range of applications in, for example, context-aware systems, lifelogging, and monitoring. This article describes a new type of context-aware advertising that employs context information obtained by ubiquitous sensors. We also introduce examples of context-aware advertising on our lifelogging and recommender systems.

Keywords

Advertising pervasive computing context-awareness sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems (TOIS) 23(1), 103–145 (2005)CrossRefGoogle Scholar
  2. 2.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. Addison-Wesley (1999)Google Scholar
  3. 3.
    Bahl, P., Padmanabhan, V.: RADAR: An in-building RF-based user location and tracking system. In: IEEE INFOCOM 2000, vol. 2, pp. 775–784 (2000)Google Scholar
  4. 4.
    Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Blum, M., Pentland, A., Tröster, G.: Insense: Interest-based life logging. IEEE Multimedia 13(4), 40–48 (2006)CrossRefGoogle Scholar
  6. 6.
    Clarkson, B., Mase, K., Pentland, A.: Recognizing user context via wearable sensors. In: Int’l Symp. on Wearable Computers, pp. 69–75 (2000)Google Scholar
  7. 7.
    Dhar, S., Varshney, U.: Challenges and business models for mobile location-based services and advertising. Communications of the ACM 54(5), 121–128 (2011)CrossRefGoogle Scholar
  8. 8.
    Gemmell, J., Bell, G., Lueder, R., Drucker, S., Wong, C.: MyLifeBits: Fulfilling the Memex vision. In: ACM Multimedia 2002, pp. 235–238 (2002)Google Scholar
  9. 9.
    Hair, J., Anderson, R., Tatham, R., Black, W.: Multivariate data analysisGoogle Scholar
  10. 10.
    Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence Review 22(2), 85–126 (2004)CrossRefMATHGoogle Scholar
  11. 11.
    Huang, Z., Zeng, D., Chen, H.: A comparison of collaborative-filtering recommendation algorithms for e-commerce. IEEE Intelligent Systems 22(5), 68–78 (2007)CrossRefGoogle Scholar
  12. 12.
    Ishii, H., Ren, S., Frei, P.: Pinwheels: Visualizing information flow in an architectural space. In: CHI 2001 Extended Abstracts, pp. 111–112 (2001)Google Scholar
  13. 13.
    Jain, A., Chang, E., Wang, Y.: Adaptive stream resource management using Kalman filters. In: SIGMOD Conference 2004, pp. 11–22 (2004)Google Scholar
  14. 14.
    Kraft, R., Stata, R.: Finding buying guides with a web carnivore. In: 1st Latin American Web Congress (LA-WEB), pp. 84–92 (2003)Google Scholar
  15. 15.
    Kurkovsky, S., Harihar, K.: Using ubiquitous computing in interactive mobile marketing. Personal and Ubiquitous Computing 10(4), 227–240 (2006)CrossRefGoogle Scholar
  16. 16.
    LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P.S., Borriello, G., Schilit, B.N.: Place lab: Device positioning using radio beacons in the wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Langheinrich, M., Nakamura, A., Abe, N., Kamba, T., Koseki, Y.: Unintrusive customization techniques for web advertising. Computer Networks 31(11), 1259–1272 (1999)CrossRefGoogle Scholar
  18. 18.
    Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)CrossRefGoogle Scholar
  20. 20.
    Liu, H., Shah, S., Jiang, W.: On-line outlier detection and data cleaning. Computers & Chemical Engineering 28(9), 1635–1647 (2004)CrossRefGoogle Scholar
  21. 21.
    Lukowicz, P., Junker, H., Stäger, M., von Büren, T., Tröster, G.: WearNET: A distributed multi-sensor system for context aware wearables. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 361–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Lukowicz, P., Ward, J.A., Junker, H., Stäger, M., Tröster, G., Atrash, A., Starner, T.: Recognizing workshop activity using body worn microphones and accelerometers. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 18–32. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Maekawa, T., Kishino, Y., Sakurai, Y., Suyama, T.: Recognizing the use of portable electrical devices with hand-worn magnetic sensors. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) PERVASIVE 2011. LNCS, vol. 6696, pp. 276–293. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Maekawa, T., Kishino, Y., Yanagisawa, Y., Sakurai, Y.: Mimic sensors: Battery-shaped sensor node for detecting electrical events of handheld devices. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds.) PERVASIVE 2012. LNCS, vol. 7319, pp. 20–38. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Maekawa, T., Kishino, Y., Yanagisawa, Y., Sakurai, Y.: Recognizing handheld electrical device usage with hand-worn coil of wire. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds.) PERVASIVE 2012. LNCS, vol. 7319, pp. 234–252. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Maekawa, T., Watanabe, S.: Unsupervised activity recognition with user’s physical characteristics data. In: Int’l Symp. on Wearable Computers, pp. 89–96 (2011)Google Scholar
  27. 27.
    Maekawa, T., Yanagisawa, Y., Kishino, Y., Ishiguro, K., Kamei, K., Sakurai, Y., Okadome, T.: Object-based activity recognition with heterogeneous sensors on wrist. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) PERVASIVE 2010. LNCS, vol. 6030, pp. 246–264. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Maekawa, T., Yanagisawa, Y., Kishino, Y., Kamei, K., Sakurai, Y., Okadome, T.: Object-blog system for environment-generated content. IEEE Pervasive Computing 7(4), 20–27 (2008)CrossRefGoogle Scholar
  29. 29.
    Maekawa, T., Yanagisawa, Y., Sakurai, Y., Kishino, Y., Kamei, K., Okadome, T.: Web searching for daily living. In: SIGIR 2009, pp. 27–34 (2009)Google Scholar
  30. 30.
    Maekawa, T., Yanagisawa, Y., Sakurai, Y., Kishino, Y., Kamei, K., Okadome, T.: Context-aware web search in ubiquitous sensor environment. ACM Transactions on Internet Technology (ACM TOIT) 11(3), 12:1–12:23 (2012)Google Scholar
  31. 31.
    Markovitch, S., Scott, P.: The role of forgetting in learning. In: ICML 1988, pp. 459–465 (1988)Google Scholar
  32. 32.
    Matthews, T., Rattenbury, T., Carter, S., Dey, A., Mankoff, J.: A peripheral display toolkit. In: UIST 2004, pp. 247–256 (2004)Google Scholar
  33. 33.
    McCrickard, D., Chewar, C.: Attentive user interfaces: Attuning notification design to user goals and attention costs. Communications of the ACM 46, 67–72 (2003)CrossRefGoogle Scholar
  34. 34.
    Mihailidis, A., Carmichael, B., Boger, J.: The use of computer vision in an intelligent environment to support aging-in-place, safety, and independence in the home. IEEE Trans. on Info. Tech. BioMedicine 8(3), 238–247 (2004)Google Scholar
  35. 35.
    Mynatt, E., Rowan, J., Craighill, S., Jacobs, A.: Digital family portraits: Supporting peace of mind for extended family members. In: CHI 2001, pp. 333–340 (2001)Google Scholar
  36. 36.
    Philipose, M., Fishkin, K., Perkowitz, M.: Inferring activities from interactions with objects. IEEE Pervasive Computing 3(4), 50–57 (2004)CrossRefGoogle Scholar
  37. 37.
    Pousman, Z., Stasko, J.: A taxonomy of ambient information systems: Four patterns of design. In: Int’l Working Conference on Advanced Visual Interfaces (AVI 2006), pp. 67–74 (2006)Google Scholar
  38. 38.
    Prasithsangaree, P., Krishnamurthy, P., Chrysanthis, P.: On indoor position location with wireless LANs. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, pp. 720–724 (2002)Google Scholar
  39. 39.
    Ravi, N., Dandekar, N., Mysore, P., Littman, M.: Activity recognition from accelerometer data. In: IAAI 2005, vol. 20, pp. 1541–1546 (2005)Google Scholar
  40. 40.
    Ribeiro-Neto, B., Cristo, M., Golgher, P., de Moura, E.: Impedance coupling in content-targeted advertising. In: SIGIR 2005, pp. 496–503 (2005)Google Scholar
  41. 41.
    Salton, G.: Automatic Text Processing. Addison-Wesley (1989)Google Scholar
  42. 42.
    Shi, Y., Huang, Y., Minnen, D., Bobick, A., Essa, I.: Propagation networks for recognition of partially ordered sequential action. In: CVPR 2004, vol. 2, pp. 862–869 (2004)Google Scholar
  43. 43.
    Sohn, J., Kim, N., Sung, W.: A statistical model-based voice activity detection. IEEE Signal Processing Letters 6(1), 1–3 (2002)CrossRefGoogle Scholar
  44. 44.
    Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  45. 45.
    Munguia Tapia, E., Intille, S.S., Larson, K.: Portable wireless sensors for object usage sensing in the home: Challenges and practicalities. In: Schiele, B., Dey, A.K., Gellersen, H., de Ruyter, B., Tscheligi, M., Wichert, R., Aarts, E., Buchmann, A.P. (eds.) AmI 2007. LNCS, vol. 4794, pp. 19–37. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  46. 46.
    van Dantzich, M., Robbins, D., Horvitz, E., Czerwinski, M.: Scope: Providing awareness of multiple notifications at a glance. In: Int’l Conf. on Advanced Visual Interfaces (AVI 2002), pp. 157–166 (2002)Google Scholar
  47. 47.
    van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In: Ubicomp 2008, pp. 1–9 (2008)Google Scholar
  48. 48.
    Wu, J., Osuntogun, A., Choudhury, T., Philipose, M., Rehg, J.: A scalable approach to activity recognition based on object use. In: ICCV 2007, pp. 1–8 (2007)Google Scholar
  49. 49.
    Yih, W., Goodman, J., Carvalho, V.: Finding advertising keywords on web pages. In: WWW 2006, pp. 213–222 (2006)Google Scholar
  50. 50.
    Yuan, S., Tsao, Y.: A recommendation mechanism for contextualized mobile advertising. Expert Systems with Applications 24(4), 399–414 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Graduate School of Information Science and TechnologyOsaka UniversityOsakaJapan

Personalised recommendations